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Abstract Experiments with teams of mobile robots in the physical world often rep-
resent a challenging task due to the complexity involved. One has to make sure that
the robot hardware configuration, the software integration and the interaction with
the environment is thoroughly tested so that the deployment of robot teams runs
smoothly. This usually requires long preparation time for experiments and takes the
focus away from what is essential, i.e. the cooperative task performed by the robots.
In this work, we present patrolling_sim, a ROS-based framework for simulation and
benchmarking of multi-robot patrolling algorithms. Making use of Stage, a multi-
robot simulator, we provide tools for running, comparing, analyzing and integrating
new algorithms for multi-robot patrolling. With this framework, roboticists can pri-
marily focus on the specific challenges within robotic collaborative missions, run
exhaustive tests in different scenarios and with different team sizes in a fairly real-
istic environment, and ultimately execute quicker experiments in the real world by
mimicking the setting up of simulated experiments.
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1 Introduction

The field of Robotics has witnessed significant advances recently, and the gener-
alized use of a common middleware for robotic applications, the Robot Operating
System (ROS) [1], has contributed to this phenomenon. Nowadays, researchers do
not reinvent the wheel when developing robotic applications, since they often benefit
and build upon the community contributions (algorithms, tools, drivers, etc.) in fun-
damental tasks such as interfacing with sensors, debugging, localization, etc. This
also led roboticists to increasingly make their code available as open source, allow-
ing the community to improve and leverage the existing functionality, thus fostering
innovation in the field.

Multi-robot systems (MRS) are a research area within Robotics, in which a set
of robots operate in a shared environment in order to accomplish a given task. The
applications of MRS are vast and have been documented previously in the litera-
ture [2]. In fact, when they are efficiently deployed, MRS have several advantages
over single robot solutions, such as: distributed control, increased autonomy, ability
to communicate, greater fault-tolerance, redundancy, assistance by teammates when
needed, space distribution, performing different tasks in parallel, and quickermission
accomplishment [3]. In general, MRS have the potential to increase the robustness
and reliability of the robotic solution, remaining functional with some degree of
performance degradation in case a member of team fails. However, one of the main
challenges in such systems is to coordinate multiple robots so as to execute collective
complex tasks efficiently, while maximizing group performance under a variety of
conditions and optimizing the available resources. Thus, a coordination mechanism
is necessary to select actions, solve conflicts, and establish relationships between
robots so they can effectively fulfill the mission [4].

In thiswork,wepresent aROS-based framework for simulation andbenchmarking
of MRS. In particular, we focus on multi-robot patrolling (MRP) as a case study. In
MRP, a set of mobile robots should coordinate their movements so as to patrol an
environment. This is awidely studied and challenging problem forMRS coordination
with a wide range of practical application scenarios (see Sect. 2).

In more detail, by making use of Stage [5], a scalable and fairly realistic multi-
robot simulator, we provide tools for running, comparing, analyzing and integrating
new algorithms for the coordination of multiple robots performing patrolling mis-
sions. Our main goal is to relief researchers from the effort of setting up complex
MRS experiments, shifting the focus to the coordination mechanism between robots,
enabling exhaustive tests in different scenarios and with different team sizes, and
bridging the gap between simulations and real world experiments.

In the next section, we provide the motivation and background behind this work,
and inSect. 3, the proposed framework forMRPsimulation and benchmarking named
patrolling_sim is described in detail. In Sect. 4, we discuss challenges, benefits of
using the framework and lessons learned, and finally the chapter ends with conclu-
sions and future work.
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2 Background

Multi-robot systems and related subjects, such as design [6], communication [7],
and path-finding [8] gained increased attention during the 80s. Still, early work on
inspection robots [9], navigation of patrol robots [10], and robot security guards [11]
focused exclusively on single robot solutions. In the end of the 80s and beginning of
the 90s, the first physical multi-robot systems have been documented in pioneering
research works with small populations of robots by researchers from Japan and
the USA [12–15]. During the 90s, a significant boost in work on MRS has been
noticeable, with a growing involvement of European researchers. In this decade,
robotics competitions, especially RoboCup [16] played an important role to foster
MRS research.

Patrol is generally defined as “the activity of going around or through an area at
regular intervals for security purposes” [17]. For MRS, this is a somehow complex
mission, requiring an arbitrary number of mobile robots to coordinate their decision-
making with the ultimate goal of achieving optimal group performance by visiting all
point in the environment, which require surveillance. It also aims at monitoring, pro-
tecting and supervising environments, obtaining information, searching for objects
and detecting anomalies in order to guard the grounds from intrusion. Hence, a wide
range of applications are possible, as exemplified in Table1.

Employing teams of robots for active surveillance tasks has several advantages
over, for instance, a camera-based passive surveillance system [18]. Robots are
mobile and have the ability to travel in the field, collect environmental samples,
act or trigger remote alarm systems and inspect places that can be hard for static

Table 1 Examples of applications of multi-robot patrol

Area of application Example

Rescue operations Monitoring trapped or unconscious

Military operations Mine clearing

Surveillance and security Clearing a building

Supervision of hazardous environments Patrolling toxic environments

Safety Preventive patrol for gas leak detection

Environmental monitoring Sensing humidity and temperature levels inside
a facility

Planetary exploration Collecting samples

Cooperative cleaning Household vacuum and pool cleaning

Areas with restricted access Sewerage inspection

Vehicle routing Transportation of elderly people

Industrial plants Stock storage

Computer systems War-game simulations
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cameras to capture. These capabilities are highly beneficial to safeguard human lives
and provide a great amount of flexibility to the deployed system [19].

Early work on applications using teams of mobile robots in surveillance contexts
addressed essentially cooperative sweeping, coverage, and multi-robot coordina-
tion [20–24]. The MRP as we know it, started to receive more attention following
the pioneer work ofMachado et al. [25], where the environment was abstracted using
a topological representation, i.e., a patrol graph, which connected the key points in
the area that needed regular visits by agents. The authors proposed and compared
several patrolling architectures, using different agent behaviors, different commu-
nication assumptions and decision-making methods. Criteria based on the average
and maximum idleness of the vertices were proposed to evaluate the performance of
each technique using a simplistic JAVA-based patrolling simulator [26]. However,
conclusions were solely drawn on two scenarios, and unweighted edges were used,
meaning that agents always take the same time to travel from one vertex to another,
independently of the distance between them.

Since then, several differentMRPstrategieswith increasingly less relaxed assump-
tions have been presented, based on a wide variety of concepts, such as: simple
reactive architectures [27], game theory [28–31], task allocation [32, 33], market-
based coordination [34–37], graph theory [38–42], gaussian processes theory [43,
44], Markov decision processes [45, 46], evolutionary algorithms [47], artificial
forces [48], reinforcement learning [49, 50], swarm intelligence [51–53], linear pro-
gramming modeling [54], bayesian heuristics [55, 56] and others with sub-optimal
results, leading to several detailed dissertations and thesis on the subject [57–66].
Lately, an effort for real world validation of MRP systems has been evident [67–70].

There are slight variations to the MRP. The idleness concept, i.e. the time that
a point in the environment spends without being visited by any robot, has been
broadly used in the literature as a basic performance metric, while other authors
proposed alternatives such as the frequency of visits to important locations [71, 72].
Additionally, different coordinationmethods for the teamof agents have been studied,
such as centralized deterministic [73] and distributed probabilistic methods [74].

Important theoretical contributions on the area patrolling problem have also been
presented previously [75–79], and it has been showed that the multi-robot patrolling
problem is NP-Hard, and it can also be solved optimally for the single robot situation
by finding a TSP tour in the graph that describes the environment to patrol (cf. Fig. 1).

In this paper, we propose a patrolling framework focusing on intelligent strategies
for coordination of the team in order to effectively visit all the surveillance points
that need vigilance inside a target area. Thus, we do not address other variants of
the the problem, like border/perimeter patrol [80, 81], and adversarial patrol [28,
82]. Building teams of robots has costs, and producing robots in large quantities
may be expensive. Moreover, doing experiments with physical robotic teams is a
long-term effort, which requires an integrated implementation, and it lacks the pos-
sibility to easily repeat an experiment with different approaches. Thus, choosing a
useful, flexible, scalable and realistic multi-robot simulator is a key task [83]. Simu-
lations are repeatable, faster to deploy, and can be fully automatic, enabling the com-
parison of different algorithms with different setups (e.g., robots types, fleet sizes,
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Fig. 1 A patrol graph displayed on top of a metric map to be used in multi-robot patrolling tasks.
The blue dots represent the vertices of the graph that must be visited, while the red arcs represent
the edges that connect pairs of vertices

environments), and simulation testbeds for MRS are nowadays crucial to rapidly
reproduce experiments [84]. While ROS and Stage provide the key building blocks
to develop realistic simulations of robotics systems, there is no ready-to-use frame-
work that allows researchers to run experiments testing and validating multi-robot
coordination strategies.

Against this background we present patrolling_sim,1 a ROS-based framework for
simulation and benchmarking of multi-robot patrolling algorithms, which has been
developed and used by the authors in previous works [33, 85]. The patrolling_sim
framework allows to run exhaustive tests in different scenarios andwith different team
sizes in fairly realistic environments, and ultimately to execute quicker experiments
in the real world by mimicking the setting up of simulated experiments. In the next
section, we describe such a framework in more details.

1http://wiki.ros.org/patrolling_sim.

http://wiki.ros.org/patrolling_sim.


8 D. Portugal et al.

Fig. 2 High-level overview of the patrolling simulation framework

3 Patrolling Simulation Framework

Work on the patrolling_sim began in 2010 with the need to compare distinct multi-
robot patrolling strategies [86] using a simulation environment and different team
sizes. At the time, ROS CTurtle, the second official release of ROS, was used, and
5 patrolling strategies were implemented and integrated: Consciencious Reactive
(CR) [25], Heuristic Conscientious Reactive (HCR) [57], Heuristic Pathfinder Con-
scientious Cognitive (HPCC) [57], Cyclic Algorithm for Generic Graphs (CGG) [38]
and the Multilevel Subgraph Patrolling (MSP) Algorithm [38]. Over the years, sev-
eral utilities, features and algorithms were progressively added, and the framework
has been migrated to recent ROS distributions, being currently supported in ROS
Kinetic Kame. Figure 2 illustrates the main components of patrolling_sim. In the
next subsections, we take a deeper look into these components: ROS and Stage, and
we overview and highlight some of the key design choices and features available in
patrolling_sim.

3.1 Robot Operating System (ROS)

Despite the existence of many different robotic frameworks that were developed in
the last decades, the Robot Operating System (ROS) has already become the most
trending and popular robotic framework, being used worldwide due to a series of
features that it encompasses, and being the closest one to become the standard that
the robotics community urgently needed. The required effort to develop any robotic
application can be daunting, as it must contain a deep layered structure, starting
from driver-level software and continuing up through perception, abstract reasoning
and beyond. Robotic software architectures must also support large-scale software
integration efforts. Therefore, usually roboticists end up spending excessive time
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with engineering solutions for their particular hardware setup [87]. In the past, many
robotic researchers solved some of those issues by presenting a wide variety of
frameworks to manage complexity and facilitate rapid prototyping of software for
experiments, thus resulting in the many robotic software systems currently used in
academia and industry, like YARP [88], Orocos [89], CARMEN [90] or Microsoft
Robotics Studio [91], among others. Those frameworks were designed in response
to perceived weaknesses of available middlewares, or to place emphasis on aspects
which were seen as most important in the design process. ROS is the product of
trade-offs and prioritizations made during this process [1].

Themajor goals of ROS are hardware abstraction, low-level device control, imple-
mentation of commonly-used functionalities, message-passing between processes
and package management. ROS promotes code reuse with different hardware by
providing a large amount of libraries available for the community, like laser-based
2D SLAM [92], 3D point cloud based object recognition [93], among others, as well
as tools for 3D visualization (rviz), recording experiments and playing back data
offline (rosbag), and much more.

Regular updates and broad community support enable the users to obtain, build,
write, test and run ROS code, even across multiple computers, given its ability to run
distributedly in many processors. Additionally, since it is highly flexible, with a sim-
ple and intuitive architecture, ROS allows reusing code from numerous other open-
source projects such as several Player robot drivers, the Stage 2D and Gazebo 3D
simulation environments, Orocos, mostly for industrial robots and machine control,
vision algorithms from the Open Source Computer Vision (OpenCV) library [94],
etc. As a result, integrating robots and sensors in ROS is highly beneficial.

Due to its peer-to-peer, modular, tools-based, free and open-source nature, ROS
helps software developers in creating robotic applications in a quick and easy way.
These applications can be programmed in C++, Python, LISP or Java, making ROS a
language-independent framework. Furthermore, ROS places virtually all complexity
in libraries, only creating small executables, i.e.nodes, which expose library func-
tionalities to ROS. Nodes communicate by publishing or subscribing to messages
at a given topic. The topic is a message bus, typically named so that it is easy to
identify the content of the message. Hence, a node that requires a certain kind of
data, subscribes to the appropriate topic. There may be multiple concurrent publish-
ers and subscribers for a single topic, and a single nodemay publish and/or subscribe
to multiple topics. The idea is to decouple the production of information from its
consumption.

Beyond the easiness of using the available tools, ROS also provides seamless
integration of new sensors without the need for hardware expertise. As a result,
the overall time spent in developing software is greatly reduced due to code reuse
and hardware abstraction, when using available ROS drivers to interface with the
hardware (Fig. 3).
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Fig. 3 Example of a simulation in Stage. Extracted from http://playerstage.sourceforge.net/?
src=stage

3.2 Stage Multi-robot Simulator

The scalability of multi-robot simulators has always been a known issue. 3D simu-
lators like Gazebo [95], MORSE [96], and V-Rep [97] normally fail to keep up the
frame rate and the simulated versus real time ratio with teams of low number of
mobile robots, such as 5 or 6, with advanced navigation and perception capabilities
in modern day computers. Clearly, in order to be able to simulate at least a dozen
mobile robots under the abovementioned conditions, a more lightweight simulator
is necessary. Stage [98] is a C++ software library designed to support research into
multi-agent autonomous systems. Stage simulates not only a population of mobile
robots, but also sensors and objects in a two-dimensional (2D) bitmapped envi-
ronment. It is a 2D dynamic physics simulator with some three-dimensional (3D)
extensions, thus commonly being described as a 2.5D (two-and-a-half dimensional)
simulator. Its graphical interface is designed using OpenGL, which takes advantage
of graphics processor (GPU) hardware, being fast, easy to use, and having wide
availability.

Stage was originally developed as the simulation back-end for the Player/Stage
system [5]. Player clients developed using Stage usually work with little or no mod-
ification on real robots and vice-versa. Thus, Stage allows rapid prototyping of con-
trollers destined for real robots. This is a powerful argument to support the real world
validity of Stage-only experiments and amajor advantage of using awell-known sim-
ulator. Stage also allows experiments with realistic robot devices that one may not
happen to have. Various sensors and actuator models are provided, including range-
finders (sonars, laser scanners, infrared sensors), vision (color blob detection), 3D
depth-map camera, odometry (with drift error model), and differential steer robot

http://playerstage.sourceforge.net/?src=stage
http://playerstage.sourceforge.net/?src=stage


A ROS-Based Framework for Simulation and Benchmarking… 11

base. Stage is relatively easy to use, it is realistic for many purposes, yielding a use-
ful balance between fidelity and abstraction that is different from many alternative
simulators. It runs on Linux and other Unix-like platforms, including Mac OS X,
which is convenient for most roboticists, and it supports multiple robots sharing a
world. Moreover, Stage is also free and open-source, has an active community of
users and developers worldwide, and has reached a well-known status of being a
robust simulation platform.

Stage is made available for ROS, through the stageros node from the stage_ros
package,2 which wraps the Stage multi-robot simulator. Using standard ROS topics,
stageros provides odometry data from each virtual robot and scans from the corre-
sponding laser model. Additionally, a ROS node may interact with Stage by sending
velocity commands to differentially drive the virtual robot.

3.3 Installation and Initializing Experiments

At the time of writing, the patrolling simulation framework supports the latest ROS
Long-Term Support (LTS) release: ROS Kinetic Kame. Assuming one is running
Ubuntu Linux OS, the installation steps are quite simple as seen below:

1. Install ROS Kinetic Kame, following the instructions at:
http://wiki.ros.org/kinetic/Installation/Ubuntu

2. Install needed dependencies, by typing in the terminal:
$ sudo apt install ros-kinetic-move-base ros-kinetic-
amcl ros-kinetic-map-server

3. Setup your ROS catkin workspace, by typing in the terminal:
$ mkdir -p ∼/catkin_ws/src
$ cd ∼/catkin_ws
$ catkin_make
$ source devel/setup.bash

4. Add the following two lines to your bash configuration file (at /home/$USER/.
bashrc):
source ∼/catkin_ws/devel/setup.bash
export ROS_WORKSPACE=∼/catkin_ws

5. Download and compile patrolling_sim:
$ roscd; cd src
$ git clone https://github.com/davidbsp/patrolling_sim
$ roscd; catkin_make

After successfully downloading and compiling the patrolling_sim framework, one
can easily initiate and configure multi-robot patrolling experiments by running the
start_experiment.py script as seen in Fig. 4:

$ rosrun patrolling_sim start_experiment.py

2http://wiki.ros.org/stage_ros.

http://wiki.ros.org/kinetic/Installation/Ubuntu
https://github.com/davidbsp/patrolling_sim
http://wiki.ros.org/stage_ros.
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Fig. 4 User configuration interface

The script triggers a user configuration interface that has been implemented using
the TkInter GUI Programming toolkit for Python [99]. This enables easy configu-
ration of simulated patrolling missions using ROS and Stage. Namely, the configu-
ration interface allows users to choose between different environment maps, robot
team sizes, patrolling algorithms, localization modes, navigation modes, waiting
times when reaching patrolling goals, and even different types of terminals. Due to
the expandability and flexibility of the patrolling framework, the user can easily add
additional maps, and patrolling algorithms beyond those referred in Sect. 3.

Currently, two localization modes are supported: Adaptive Monte Carlo Local-
ization (AMCL) and fake localization. AMCL is a probabilistic global localization
algorithm [100], which uses a particle filter to track the pose of a robot, by fusing
laser scan matching with a source of odometry in order to provide the estimate of the
robot’s posewith respect to a knownmap reference frame. Fake localization is amuch
more lightweight localization node for simulations that provides the same interface to
the robots as AMCL, and simply forwards perfect localization information reported
by the Stage simulator with negligible computation cost.

Furthermore, the robots leverage from autonomous navigation by following two
possible approaches: ROS navigation or spqrel_navigation. On one hand, ROS navi-
gation [101] is available out of the box in ROS via the navigation metapackage. This
way, given any physically reachable goal, the robot should be able to autonomously
navigate to that goal, avoiding collisions with obstacles on the way by following
a series of steps. The navigation system at the high level is fairly simple: it takes
in a navigation goal, data from sensors, and localization information, and outputs
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velocity commands that are sent to the mobile robot base via the move_base node.
Autonomous navigation in patrolling_sim is achieved with a known a priori map.
Therefore, the robot will follow informed plans considering distant obstacles. The
navigation algorithm includes several interesting features. For instance, Random
Sample Consensus (RANSAC) is applied to filter out Light Detection And Rang-
ing (LIDAR) readings that are invalid due to hardware limitations in the real world,
such as false positives generated by veiling effects. Also, a planar costmap, which is
initialized with the static map, is used to represent obstacle data and the most recent
sensor data, in order to maintain an updated view of the robots local and global
environment. Inflation is performed in 2D to propagate costs from obstacles out to a
specified radius in order to conservatively avoid collisions. The global planner uses
an A∗ algorithm that plans in configuration space computed during obstacle infla-
tion in the costmap, not taking into account the dynamics or the kinematics of the
robot, which are considered instead by the local planner, which generates velocity
commands for the robot, safely moving it towards a goal. The planner cost function
combines distance to obstacles, distance to the path produced by the global planner,
and the speed at which the robot travels. Finally, a few recovery behaviors can be
performed, e.g. due to entrapment. The robot will perform increasingly aggressive
behaviors to clear out space around it, and check if the goal is feasible.

On the other hand, spqrel_navigation3 [102] is a lightweight alternative for ROS
navigation, which includes two ROS nodes: srrg_localizer2d, a lightweight variant
for the AMCL node, and spqrel_planner, a lightweight variant for the move_base
node. They have the same interfaces as AMCL andmove_base, so they can be used in
their replacement with minimal effort. Also spqrel_navigation is open source and it
has been createdwith thegoal to runon systemswith limited computational resources,
thus it is very suitable for multi-robot simulations on a single machine or for low-cost
multi-robot systems. At the high-level, the spqrel_navigation package has the same
interfaces of ROS navigation and therefore it can be easily used as a replacement
for it. However, a significant decrease in computation load when compared to ROS
navigation can be expected.

After choosing the desired configuration, and pressing the “start experiment”
button, the script will dynamically trigger ROS launch files, which will start the
necessary ROS nodes and parameters to accommodate the configurations chosen
(e.g. setting the initial position for localization estimation and the actual robots’
position in the stage simulator). Moreover, the script will start each different robotic
agent with navigation, localization, and communication capabilities in ROS. This is
illustrated in Fig. 5.

In addition, one can run a set of experiments using the run_exp.sh bash script.
After the time defined in the TIMEOUT variable, the command terminates and more
instances can be repeated for performing multiple batch experiments. The script
template runs a command-line version of the start_experiments.py script as
many times as intended.

3https://github.com/LCAS/spqrel_navigation/wiki.

https://github.com/LCAS/spqrel_navigation/wiki.
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Fig. 5 An experiment running after the initial configuration
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3.4 Patrol Agent and Additional Strategies

The patrolling behavior of each robot depends exclusively on the MRP strategy
chosen. Typically, the mobile robots within a team follow a similar behavior, only
changing their initial conditions, such as their ID and starting position in the environ-
ment. During the mission, robots are either given or compute their own waypoints,
i.e. vertices of the graph that they should visit, and they continuously coordinate with
teammates (for instance, by keeping distances between them, explicitly communi-
cating, etc.) to collectively perform the patrolling task.

Considering the above description of a typical case, it becomes clear that there
are several common behaviors within distinct patrolling strategies. Having this in
mind, we have provided a general PatrolAgent foundation, which can be used for
the implementation of robot behaviors. More specifically, PatrolAgent represents a
base class with general behaviors, which can be extended in derived classes for each
specific MRP algorithm that inherit its members and retain its characteristics, and in
which they can add their own members.

The common properties of the PatrolAgent class include essentially the initializa-
tion of agents (assigning the robot ID, extracting relevant map and graph informa-
tion, initializing control variables, starting positions, idleness tables, ROS publish-
ers and subscribers, etc.); routines for announcing when the robot is ready to start
the patrolling mission; actions to perform when the robot moves to a position in the
environment, when it arrives there, in case of inter-robot interference and when the
simulation finishes; routines for updating parameters based on events, for exchanging
poses with other robots, and for saving and sending the robot’s own pose.

This way, the inclusion of additional MRP strategies in the patrolling_sim frame-
work becomes straightforward and is highly encouraged. One simply needs to create
a derived class that inherits all the accessible members of PatrolAgent, and modify or
add new functions andmembers to implement the required behaviors of the coordina-
tion strategyproposed.This flexibility to addMRPalgorithmshas resulted in a current
total of 11 distinct approaches (cf. Table 2): the 5 original strategies referred in Sect. 3,
and 6 additional strategies developed along the years, namely: Random Patrolling
(RAND), Greedy Bayesian Strategy (GBS) [103], State Exchange Bayesian Strat-
egy (SEBS) [55], Concurrent Bayesian Learning Strategy (CBLS) [69], Dynamic
Task Assignment Greedy (DTAG) [33], and Dynamic Task Assignment based on
sequential single item auctions (DTAP) [33].

3.5 Automatically Extracting Results for Analysis

The patrolling framework proposed is based on distributed communication, fol-
lowing a publish/subscribe mechanism, due to its built-in integration in ROS. In
the beginning of each test, a specific ROS node is responsible for advertising the
start of the mission when all robots are ready, and collecting results during the
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Table 2 Overview of MRP strategies in patrolling_sim

MRP strategy Short description

Conscientious reactive (CR) Robots move locally to the neighbor vertex
with higher idleness

Heuristic conscientious reactive (HCR) Robots decide the neighbor locally, based on
idleness and distance

Heuristic pathfinder conscientious cognitive
(HPCC)

Robots decide the next vertex globally on the
graph, based on idleness, distance, and the
vertices in-between

Cyclic algorithm for generic graphs (CGG) All robots follow the same global route, which
visits all vertices in the graph

Multilevel subgraph patrolling (MSP) Each robot patrols its own region of the graph,
using a cyclic strategy in each subgraph

Random patrolling (RAND) Robots decide randomly the next vertex

Greedy bayesian strategy (GBS) Robots use local Bayesian decision to
maximize their own gain

State exchange bayesian strategy (SEBS) Similar to GBS, but considers their teammates
in the decision to avoid interference

Concurrent bayesian learning strategy (CBLS) Robots concurrently decide and adapt their
moves, according to the system and teammates
state, using a reward-based learning technique

Dynamic task sssignment greedy (DTAG) Robots negotiate greedily the next patrol vertex
to visit

Dynamic task assignment based on sequential
single item auctions (DTAP)

Robots negotiate all vertices of the graph to
build a partition of locations to visit

experiments. Thismonitor node is merely an observer, which analyzes the exchange
of communication between robots in the network, and does not provide feedback to
them whatsoever. The key objective is to collect experimental results independently,
as seen in Fig. 6, which in turn allows benchmarking differentMRP algorithms under
the same test conditions.

During the patrolling missions, the monitor node (cf. Fig. 7) logs several relevant
parameters, such as the current idleness of vertices in the graph and corresponding
histograms, the average and standard deviation of the idleness of the vertices along
time, the total and average number of visits per vertex, the number of complete
patrols, the number and rate of inter-robot interference occurrences, the maximum
and minimum idleness between all vertices, and the overall average, median and
standard deviation of the graph idleness. All these data are saved on files in different
formats for later statistical analysis. Some examples of performance metrics and
results obtained with patrolling_sim are illustrated in [33].

Furthermore, the monitor node controls the patrol termination condition, which
can be defined when reaching a given number of patrol cycles (typically a minimum
number of visits to all vertices in the graph), as a timewindow, or anyothermeasurable
condition; thus announcing the end of the mission, and stopping the simulation.
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Fig. 6 The monitor node (highlighted in green) announcing the 11th patrol cycle in an experiment
with 12 robots in a grid shaped map
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Fig. 7 Log files written by the monitor node, resulting from the experiment of Fig. 6

3.6 Transition to Other Simulators and Real World
Experiments

Despite having been developed for use with the Stage multi-robot simulator,
patrolling_sim can easily be tested with other simulators with minor modifications.
To that end, one only needs to launch the framework without resorting to the User
Configuration Interface, and replace the ROS launch file that starts the stage simula-
tor with a launch file to start the alternative simulator instead. By having the simulator
(environment, robots, sensors, ROS topics, tf frames, etc.) configured similarly to
Stage, all the ROS nodes in the system will be able to communicate flawlessly, and
simulations will run without issues. In fact, in [83], a multi-robot team on patrol
employing the patrolling_sim framework, was used as a case study for comparing
the Morse and the Gazebo 3D simulators. The quantitative analysis focused on CPU
and GPU consumption, thus assessing the scalability of both simulators, and their
ability to simulate a limited number of robots. This shows the flexibility and ease of
use with other simulators. The patrolling framework has also been tested with the
V-REP simulator, according to [104].

In addition to this, patrolling_sim can also be exploited for use with teams of
physical mobile robots. Some research groups have tested patrolling strategies based
on the proposed framework over the past few years. For instance, in [33, 34, 70],
experiments with a team of three Turtlebot robots have been described in office-like
and corridor-like environments. In [69], experiments with up to six Pioneer-3DX
robots have been conducted in a real world large scale infrastructure, and in [68] this
number was raised to a total of 8 Turtlebot robots in the experiments reported.
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Fig. 8 Example of a real world experiment with 3 turtlebots. Extracted from [33]

According to [33], “the tests with real robots have been performed by using the
same implementation of the algorithms described [...]. ROS infrastructure indeed
allows for an easy porting from a Stage-based simulated application to a real one.
In particular, Turtlebots in the real environment and robots in the Stage simulator
use the same map of the environment, the same configuration of parameters for
localization and navigation, and the same implementations of the MRP algorithms”.
This is illustrated in Fig. 8.

By testing the execution of the developed algorithms with real robots, the porta-
bility of the software to a real environment becomes evident. However, besides
the complexity involved in setting up teams of mobile robots for patrolling tasks,
these experiments present an additional challenge due to the intrinsic characteristics
of ROS, which is typically used for centralized applications, e.g. in single robots
or architectures with a common point for processing the information. According
to [105], in MRS setups, topics and parameters are often complex and may result
in duplicities, high computing costs, large demand for communications (specially
over Wi-Fi), delay in the processes and other problems related to system handling
by an overloaded single ROS master. Therefore, to avoid this situation, robots in a
multi-robot ROS architecture commonly run a dedicated master node.

For the aforementioned physical experiments for MRP, roboticists have used
several different solutions to enable the communication between robots running
dedicated ROS masters. A few works use external tools, such as the lightweight
communications and marshalling (LCM) [106], a library independent of ROS that
is used to exchange information between robots in [70], or simply UDP broad-
cast, as in [68]. Moreover, a set of multimaster solutions have been integrated as
ROS packages. For instance, in [103] the wifi_comm,4 a multi-robot communication
and discovery package was used. This was proposed in [107], being based on for-

4http://wiki.ros.org/wifi_comm.

http://wiki.ros.org/wifi_comm.
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eign_relay5 to register topics on foreign ROS masters, and the Optimized Link State
Routing (OLSR) protocol to monitor robots connecting and disconnecting from the
network, and allowing the deployment of mobile ad-hoc networks. Another solution
used for multi-robot communication in [33] is tcp_interface,6 which provides a ROS
node that allows easy translation from ROS messages to strings sent over TCP.

Recently, a very promising solution named multimaster_ fkie7 [108] has been
employed in the hybrid simulated and physical robot experiments reported in [83].
This package offers a set of nodes to establish and manage a multimaster network,
requiring no (or minimal) configuration, and all changes in the ROS system are auto-
matically detected and synchronized. From the developer point of view, no specific
routines are necessary, which shows the flexibility of the solution, relying only on
a simple configuration of the shared topics, nodes and services between different
masters. For this reason, the multimaster_ fkie package will be put in use in the
STOP R&D Project8 [109], which aims at deploying a commercial security system
of distributed and cooperative robots on patrol by 2020.

Supporting communication between different ROS master nodes, allow for the
exchange of messages between different robots without the need of a server, and
supporting the malfunction of any part of the system without compromising the
integrity of the whole system, since there is no central point of failure.

4 Discussion

In this work, we take a step towards providing a standard benchmarking frame-
work for running and comparing different patrolling strategies with teams of mobile
robots. Due to the complexity of the MRP problem, and the absence of a superior
coordination strategy for any environment with any number of robots, we believe
that providing a common simulation testbed will allow important advancements in
this field of research. Therefore, we welcome the integration of additional strategies
by the MRS community.

The simulation of newMRP strategies allows to preliminarily validate them,while
enhancing the coordination of robots, the decision-making abilities, and correcting
small bugs before moving on to real world experiments. On one hand, real world
experiments includenoisy sensor readings, localization issues and even robot failures,
which may not be precisely modeled in simulation experiments. On the other hand,
they may benefit from significant code reuse, tools for analysis, debugging, etc., and
the features provided by patrolling_sim and ROS itself.

In summary, the patrolling framework proposed is based on the current standard
for robotics software – ROS, allowing the easy utilization and transition of experi-

5http://wiki.ros.org/foreign_relay.
6https://github.com/gennari/tcp_interface.
7http://wiki.ros.org/multimaster_fkie.
8http://stop.ingeniarius.pt/.

http://wiki.ros.org/foreign_relay.
https://github.com/gennari/tcp_interface.
http://wiki.ros.org/multimaster_fkie.
http://stop.ingeniarius.pt/.
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ments to the real world, as well as other simulators beyond Stage, e.g. MORSE or
Gazebo. It provides various useful features, such as a graphical user interface for
parameterizing the simulations or data logs for performance analysis, and provides
a balanced trade-off between realism versus computation load, by making use of the
2.5D Stage simulator.

Despite the focus on MRP, we hope that this framework can be useful for many
other MRS applications due to the common intersections between these, e.g. setting
up of MRS teams in simulated environments, launching navigation and localization
nodes on several robots in parallel, creating a common structure to deal with the
simulation of teams of mobile robots, allowing the communication between multiple
robots within a team, etc.

5 Conclusion

In this chapter, we have proposed patrolling_sim, a ROS-based framework for sim-
ulation and benchmarking of MRP algorithms, which has been used in recent years
to study the patrolling problem. The framework proposed enables researchers to run,
compare, analyze and integrate new algorithms in commonly adopted simulation
testbeds. Thus, it places the focus on the coordination between multi-robot teams,
and facilitates the preparation of MRS experiments in the physical world with ROS,
by mimicking the setting up of simulated experiments and reusing the source code.

Beyond the inclusion of more algorithms and simulated environments in the
framework, in the future we would like to add more features, including the full
integration of an automatic method to extract patrol graphs from occupancy grids
and select initial robot positions for the robotic team, as well as support for running
different simulators directly from the configuration GUI.
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