
robotcraft2017_patrol ROS Package Installation

David Portugal, Ingeniarius Ltd.

16 June 2017

1. Install Ubuntu 16.04 Linux (64 bits) - Xenial Distribution

Download the Operating System from:

ftp://ftp.dei.uc.pt/pub/linux/ubuntu/releases/16.04.2/ubuntu-16.04.2-desktop-

amd64.iso

and record it to a USB-stick (https://www.ubuntu.com/download/desktop/create-a-usb-

stick-on-windows) or to a CD/DVD.

Boot your PC from the USB/CD/DVD.

We recommend to download the updates while installing Ubuntu and install third-party

software for graphics and Wi-Fi hardware.

Make sure that you install Ubuntu in English language.

We do not recommend installing Ubuntu in a Virtual Machine, unless you have at least

4GB of RAM and 4 CPU cores dedicated to your virtual machine.

2. Run the Ubuntu updates

After a successful installation of the OS, please install the latest updates.

Open the gnome-terminal and type:

sudo apt upgrade

3. Install ROS Kinetic Kame

Follow the instructions at: http://wiki.ros.org/kinetic/Installation/Ubuntu

Please choose the desktop-full installation

ftp://ftp.dei.uc.pt/pub/linux/ubuntu/releases/16.04.2/ubuntu-16.04.2-desktop-amd64.iso
ftp://ftp.dei.uc.pt/pub/linux/ubuntu/releases/16.04.2/ubuntu-16.04.2-desktop-amd64.iso
https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
http://wiki.ros.org/kinetic/Installation/Ubuntu

4. Install dependencies for robotcraft2017_patrol

Open the gnome-terminal and type:

sudo apt install ros-kinetic-move-base ros-kinetic-nav-core

ros-kinetic-amcl ros-kinetic-map-server

5. Setup your ROS catkin workspace

In the terminal type:

mkdir ~/catkin_ws

cd ~/catkin_ws

wstool init src

catkin_make

source devel/setup.bash

Open the “.bashrc” configuration file from the terminal with:

 gedit ~/.bashrc

and add the following two lines at the of the file:

source ~/catkin_ws/devel/setup.bash

export ROS_WORKSPACE=~/catkin_ws

Save the file and exit.

To test if your changes were successful type “roscd” in a new terminal, and your

current directory will change to “catkin_ws”.

6. Download the robotcraft2017_patrol framework into your Workspace:

In the terminal type:

roscd

cd src

git clone https://github.com/ingeniarius-ltd/robotcraft2017_patrol

https://github.com/davidbsp/robotcraft2017_patrol

7. Compile the robotcraft2017_patrol framework in your Workspace:

In the terminal type:

roscd; catkin_make

If you have carefully followed all the above steps, you should see a full compilation

running in your workspace until 100%.

8. Start the robotcraft2017_patrol framework:

In the terminal type:

roslaunch robotcraft2017_patrol robotcraft2017.launch

You will see the Stage simulator starting up with 3 robots ready to patrol!

9. Run the patrolbot example:

The patrolbot initial example consists in sending a navigation goal to each of the 3

robots. It also exemplifies how robots can communicate by publishing data in the

“/communication” topic, and subscribing data from it.

To run the example with three robots simultaneously, type in the terminal:

roslaunch robotcraft2017_patrol start_robots.launch

You will see the robots moving in the Stage simulator!

10. Controlling the behavior of each robot

The “patrolbot.cpp” code in the “src” folder of “robotcraft2017_patrol”, provides

example code that you should carefully analyze.

To run each robot separately, you should re-launch the robotcraft2017_patrol

framework (step 8) and then type in separate terminals:

rosrun robotcraft2017_patrol patrolbot _robot_id:=0

rosrun robotcraft2017_patrol patrolbot _robot_id:=1

rosrun robotcraft2017_patrol patrolbot _robot_id:=2

11. Programming the behavior of the robots

Your assignment as a Robotcrafter will be to choose together with your group an

effective patrolling strategy, and program the collective behavior of robots to

frequently visit all points of the environment (i.e. all vertices of the graph).

Below you can check the 12 vertices that your robots should visit:

(“patrol_maze_graph” image in the “arena” folder)

Please modify the “patrolbot.cpp” source code to implement the desired behavior.

Remember: you will need to recompile the code with “roscd; catkin_make” to test

your changes.

12. Useful Tips

You should install terminator to manage the multiple consoles for starting/testing the

different ROS nodes:

sudo apt install terminator

In order to monitor the load of your computer, you should install the multiload

indicator for Ubuntu:

sudo apt install indicator-multiload

Happy Programming!

