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a b s t r a c t

Mines deployed in post-war countries pose severe threats to civilians and hamper the reconstruction
effort in war hit societies. In the scope of the EU FP7 TIRAMISU Project, a toolbox for humanitarian
demining missions is being developed by the consortium members. In this article we present the FSR
Husky, an affordable, lightweight and autonomous all terrain robotic system, developed to assist human
demining operation teams. Intended to be easily deployable on the field, our robotic solution has the
ultimate goal of keeping humans away from the threat, safeguarding their lives. A detailed description of
the modular robotic system architecture is presented, and several real world experiments are carried out
to validate the robot’s functionalities and illustrate continuous work in progress on minefield coverage,
mine detection, outdoor localization, navigation, and environment perception.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The removal of landmines has become a global emergency. Ac-
cording to UNICEF, over 100 million landmines are still lodged in
the ground worldwide, harming and taking lives of over 20 thou-
sand people every year, the vast majority civilians. Battlefield de-
bris like landmines and other unexploded ordnance (UXO) may
remain active for decades, posing an eminent risk for local people.
In addition, they hamper peace-keeping, stability and reconstruc-
tion efforts, preventing the recovery of nations, inhibiting the use
of land for food production, and not allowing refugees to return
home. On the other hand, demining is a time-consuming, stress-
ful, tiresome and dangerous task, and it costs hundreds of times
more than setting mines. It requires complete removal of all mines
buried in the field so that the land can be returned to the local pop-
ulation, and there is an imperative need to improve safety, reliabil-
ity and speed of demining operations [1]. The objective of the EU
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FP7 Toolbox Implementation for Removal of Anti-PersonnelMines,
Submunitions and UXO (TIRAMISU1) project is to provide themine
action communitywith a toolbox to assist in addressing the several
issues related to humanitarian demining, thus promoting peace,
national and regional security, conflict prevention, social and eco-
nomic rehabilitation and post-conflict reconstruction [2]. In this
context, the Institute of Systems and Robotics of the University of
Coimbra (ISR-UC), is the project consortium member responsible
for developing robotics research tools for field demining opera-
tions, and landmine sensor detection.

There have been important advances related to technology for
mine detection and removal over the past decades. As a robotic
application, mine clearance and removal is challenging and risky,
however it has tremendous potential. Besides increasing safety for
human deminers, robotic systems should increase productivity by
speeding up the process.Moreover, these systems should be able to
distinguish landmines from other buried debris, while being sen-
sitive to all types of explosive devices. In terms of operation in
the field, a demining robot must maneuver continuously for long

1 http://www.fp7-tiramisu.eu.
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Fig. 1. The FSR Husky demining robot.

periods of time in widely varying environment conditions and ter-
rains over large areas. This assumes robustness against vibration,
as well as easiness of maintenance and field deployment, leverag-
ing from a flexible, modular and reliable design. Further relevant
aspects include intuitive human–machine interface with real-time
interaction, the possibility to remotely control the robot within
safe distances, and a portable, fast-response and reliable mine de-
tecting system [1]. Having this in mind, in this work we describe
the development of an autonomous lightweight all terrain robot for
field demining missions in the framework of the EU FP7 TIRAMISU
Project—the FSR Husky (cf. Fig. 1). In addition to the description
and integration of the robotic system, our focus is also placed on its
intelligent functionalities such as outdoor localization, navigation,
environment perception, and its potential for application in mine-
field coverage, andmine detection as reported by outdoor field tri-
als.

In the remainder of this article, an overview of related work
in the area of robotic tools and sensors in mine clearance opera-
tions is presented. Afterwards, in Section 3 we describe in detail
the development and assembling of our robotic system, providing
information on hardware components, sensor specifications, kine-
matics, software integration, development, and testing. In the sub-
sequent section, we validate the robot’s intelligent capabilities by
means of several field trials, discuss results, and report important
lessons learned during the ICRA 2014 Humanitarian Robotics and
Automation Technology Challenge (HRATC 2014)2 thatwe have or-
ganized under the endorsement of the IEEE Robotics and Automa-
tion Society—Special Interest Group on Humanitarian Technology
(IEEE RAS-SIGHT). Finally, the article ends with concluding consid-
erations and future research directions.

2. Related work

Robotic tools developed so far for demining purposes have fo-
cused in a variety of aspects, e.g.modular mine detection payloads
for existing demining robots [3], blast resistant armored systems
that dealwith vegetation clearance andmine removal [4], remotely
controlled lightweight robot systems [5], semi-autonomous espe-
cially designed robots [6], and even suspended pole robots [7]. The
proposed robotic systems in the literature differ in terms of speed,
level of autonomy, operation time, mine detection technology, lo-
comotion andmobility,weight, size, payload, capabilities, cost, and
robustness. Below, we review important work in this area, with
special focus on demining robots, mine sensing technology and
field coverage.

2 http://isr.uc.pt/HRATC2014.
Several field robots have been presented in the academic
research context over the last decades. Gryphon-IV [8] developed
in the Tokyo Institute of Technology, is a large four-wheeler all-
terrain vehicle that can be remotely controlled or manually driven
from the inside. It has a long-reach 3 m wide manipulator with
a non-metallic pantograph arm with 3 degrees of freedom (DOF),
which is equipped with a Ground Penetrating Radar (GPR) and a
conventional Metal Detector (MD). In addition to the long range
WiFi, the robot is endowed with a pair of stereo cameras, being
capable of modeling the terrain for traversal, and it uses Global
Positioning System (GPS) for outdoor localization. Being built
around an all-terrain buggy, the robot runs on gasoline with a 25 L
tank, which corresponds to an operation time of around 10 h, and
the robot’s maximum payload is 170kg. According to [9], since
2005 its capabilities have been evaluated in several prepared test-
minefields with deactivated landmines, enduring most weather
conditions, and terrain configurations, and allowing to gradually
improve the various aspects of the robot.

Following a distinct philosophy, researchers from the Univer-
sity of Genova have been developing a four wheeled agricultural
tractor with blast resistant wheels against anti-personnel (AP)
mines, named LOw COSt TRActor for humanitarian demining (LO-
COSTRA) [10]. The system is built around a commercially available
tractor with a 50 L diesel tank combined with converted off-the-
shelf agricultural tools, being able to cut through vegetation and
prepare the ground before mine removal, with its excavation sys-
tem. The main goal is to reduce deminer accidents and increase
the clearance speed in a cost-effective way. Similarly to Gryphon-
IV, LOCOSTRA is also not fully autonomous and must be remotely
teleoperated. The key innovation is the thick steel armored wheels
which are designed towithstand the forces associatedwith an anti-
personnel mine detonation, allowing the machine to continue to
work if it inadvertently detonates a mine. The overall weight of
the tractor is around 1850 kg, and it can traverse uneven and steep
ground due to its articulated skid-steering, with a lift capacity of
1800 kg. The cost has been kept below e50,000. Field tests in the
Jordan–Syria border have shown that LOCOSTRA is blast resistant
up to 280 g of Trinitrotoluene (TNT), and it is easy to use by an un-
trained remote operator [11].

Researchers from the Royal Military Academy (RMA) of Bel-
gium have also been working on a heavy tracked outdoor Explo-
sive Ordnance Disposal (EOD) platform called tEODor [12]. This
350 kg robotic system is endowed with electronics, sensors, com-
puting power, motor control units and power sources in order to
be able to execute remote controlled and semi-autonomous tasks.
In terms of mine detection, it is equipped with a Multi-Channel
system with 5 independent MDs. Additionally, the robot includes
an active vision system consisting in a Time-of-Flight (TOF) cam-
era, and a stereo camera, mounted on a pan–tilt unit [13], giving
the robot further capabilities such as terrain traversability analy-
sis. Remote-operation functionalities are provided via an intuitive
human–machine interface (HMI). The platform runs on lead-gel
rechargeable batteries with a continuous operation time between
2 and 3 h. Field experiments have proven the usefulness of the
tEODor platform in dealing with rough terrain, with good maneu-
verability and off-road performance. Moreover, the rugged design
of the platform makes it capable of handling unfriendly environ-
mental conditions which is crucial for demining tasks.

Most likely inspired by the 2-bicycle-wheel PErsonal Mine EX-
plorer (PEMEX) robot, proposed by Nicoud and Habib during the
nineties [14], researchers from theUniversity of Lisbon have devel-
oped an affordable robotic vehiclewith four independently steered
bicycle wheels, named Ares [15]. The robot presents a behavior-
based control system, allowing it to have four different locomotion
modes (turning-point, lateral, displacement and double Acker-
man). Powered by lead–acid batteries that provide 4 h of operation

http://isr.uc.pt/HRATC2014
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time, Ares uses stereo vision as its primary sensory modality, and
is equipped with a low cost compass. Thus, localization is obtained
by fusing visual odometry, wheel odometry, and magnetometer
and accelerometer information. The platform is also equippedwith
bumpers and sonars for obstacle detection, and allegedly an odor
sensor is used for TNT explosive detection. However, therewere no
reports of the successful application of this sensor found, neither of
fully autonomous operation of the robot in field trials.

Field conditions may limit the progress of humanitarian mis-
sions. Thus, several authors highlight the potential of a walking
solution in order to adapt to unstructured natural environments,
e.g. [16]. In the work of Gonzalez de Santos et al. [17], a six-
legged robot for humanitarian demining missions, named SILO-6
is proposed. This hexapod possesses a 5 DOF scanning manipula-
tor, which handles a sensor head consisting of a metal detector, in-
frared sensors and a set of flex sensors. In terms of localization, the
robot provides odometry information from the joint-positioning
sensors, absolute orientation around the vertical axis from an elec-
tromagnetic compass, and differential GPS. These three sources
of localization are fused using a Kalman Filter (KF). The control
modes of the system are mainly teleoperation and operator-in-
the-control-loop, and its operation time is over 1h on DC batteries.
Furthermore, SILO-6 is limited to a maximum speed of 0.5m/s. In
fact, wheeled and tracked vehicles are often preferred by the field
robotics community, due to the low speed, complexity, weight and
cost involved in most walking robots [18].

In alternative to complete robotic systems for mine clearance
such as the aforementioned ones, some research groups have
focused on modular payload units for existing military robots
such as the Niitek Minestalker, the iRobot Packbot or the Foster-
Miller Talon [19–21] reportedly with successful field deployment.
Following a modular approach, these payloads can be deployed
across multiple robots and extend the native abilities of existing
robotic platformswithout substantial re-engineering efforts. These
include threat detection payloads (e.g. sweeping mechanisms,
manipulators, excavation systems, explosive detectors), marking
system payloads (e.g. multi-color paint system, flag deployment),
navigation payloads (e.g. lasers, camera, GPS, IMU), and the con-
troller unit payload (e.g. onboard CPU, Ethernet communication,
USB interface) [3]. For more details in robotics for humanitarian
demining, a thorough survey on this issue is available in [6].

From within the available mine sensing technologies, the most
widely used is still the MD, which is based on the principle of elec-
tromagnetic induction. MDs have been enhanced over the years
to enable background rejection so as to avoid false alarms due to
metal fragments. They usually have small dimensions, lowweight,
low energy consumption and low cost. However, they may suffer
from limitations related to themagnetic properties of the soil, con-
centration of metal scraps, burial depth of mines and mines with
minimalmetal composition [22,23]. Advances in geophysical tech-
nologies have enabled the utilization of subsurface imaging. Par-
ticularly, Ground Penetrating Radars (GPRs) have been employed
in the field with promising results [24]. This technology is use-
ful for the discrimination of targets, enabling the visualization of
their shape [25] up to 30 cm of depth, albeit their sensitiveness to
heterogeneous soil moisture. GPR works by emitting an electro-
magnetic wave into the ground using an antenna which does not
need direct ground contact. In order to overcome the limitations
of MDs and GPR, and explore their complementary features, it is
also common to combine both sensors in a dual configuration. Such
solutions require methods for data fusion and are commonly em-
ployed in a hand-held device or vehicle, e.g. [26,27]. Several other
technologies have been proposed and discussed in the literature,
presenting different levels of technological maturity, such as va-
por explosive detection systems based on chemical sensors, pas-
sive microwave radiometers, thermal, multi-spectral and acoustic
imaging systems, photo-acoustic spectroscopy, X-ray backscatter
techniques, nuclear quadropole resonance (NQR), thermal and fast
neutron analysis (TNA & FNA), multi-sensor probes with force and
tactile feedback, and others [28].

Despite recent advances, the development of a unique robot
that can operate under all terrain and environmental conditions
while meeting all demining requirements is not a simple task [6].
In their current status, robotized solutions are often expensive, un-
safe, complex and inflexible [29], and are still best used as mobile
platforms endowed with arrays of mine detection sensors with re-
stricted decision-making capabilities. Nevertheless, a recognized
effort has been made by several research groups to design au-
tonomous robots in order to eliminate the permanent presence
of an operator. While heavy-duty mine clearance vehicles were
popular as an alternative to manual demining, nowadays the fo-
cus has been put on developing small and cheaper mobile dem-
ining robots that can deal with confined spaces, and without
having logistical problems associated with transportation to re-
mote areas [19]. Similarly, the development of deformable ma-
chines that can get through narrow entrances has been discussed,
e.g. [18], and the literature is consensual in pointing out that robots
should follow modular mechanical structures, by separating mo-
bility from manipulation and focusing on improving current robot
platforms [6,7,29]. These machines can also be used in coopera-
tion with dog teams and/or manual clearance teams, as well as
unmanned aerial vehicles (UAVs), which may enhance localiza-
tion, reconnaissance, trajectory planning and communications in
rough environments, and also provide wide-area assessment [29].
Besides, swarm robotics is also attractive seeing as multiple, small
and low-cost robots can coordinate their actions in the field, while
speeding up the process and sharing experience on the identifica-
tion of mines [19].

Robots for humanitarian demining usually start their missions
along the boundaries of the minefield, with the detection sensors
placed above the terrain inside. Over the course of the mission, the
robot slowly progresses inside according to the degree of belief on
the absence of mines in theminefield [18]. Thus, fully autonomous
robots can benefit from intelligent coverage strategies [30]. In the
particular case of mine clearance, the goal of the robot is not to
detect an opponent inside a closed area. Unlike classical robotic
coverage [31], thismeans that the robot trajectory does not have to
be necessarily optimal in terms of distance covered, and possible
constraints such as being unpredictable by an external observer,
or not knowing the shape of the area prior to the mission do
not apply. The key aspect in minefield coverage is to guarantee
that all the area is scanned for mines, hence the robot may not
need to physically go everywhere as long as its detection system
(e.g. sensing arm) covers the entire area. In addition, in minefield
coverage it is desirable to respect an optimization criteria such as
minimizing coverage time or being energy-efficient. For example,
Jin and Tang [32] consider terrain elevation and the effect of
slopes in their coverage strategy, while Oksanen and Visala [33]
followa split-and-merge strategy to decompose the area in simpler
convex polygons, which can then be traversed following a lawn
mowing trajectory. Furthermore, the coverage problem may also
be extended to teams of robots working in parallel, in order to
reduce mission time [34,35].

2.1. Statement of contributions

In this work, we present an all-terrain robotic platform named
FSR Husky, for field demining missions. Our philosophy differs
from the previously referred robots, by presenting an affordable
lightweight system with autonomous capabilities such as outdoor
navigation, localization and perception, which uses a clearance
arm to detect and localize landmines in a suspicious area. Despite
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Fig. 2. Husky robot base dimensions.
its humanitarian relevance and the numerous works addressing
this topic in the past years, this is still an open problemwithout an
affordable commercial solution. We describe the implementation,
features, and modular integration of the robotic system together
with details on its capabilities, and foreseen development, so as
to achieve full autonomy. Field trials validate the work conducted,
and their outcome allows for a discussion of the potential to
employ the robot in demining operations. We also discuss lessons
learned during the HRATC 2014 competition, and outline future
directions of research in this area.

3. The FSR Husky platform

In this section we describe the components of the proposed
all-terrain robotic system, focusing especially on its steering base,
hardware and sensors, robot kinematics and constraints, energy
consumption, arm sweeping for mine coverage, software, and
testing tools.

3.1. Robot base

The FSR Husky is built around a Clearpath Husky A200 robot
base.3 This is a rugged yet compact, 50 kg lightweight all-terrain
vehicle for field robotics research.With an International Protection
(IP) rating of IP55, it is fully protected against splashwater fromany
direction, and dust, thus not interfering with the correct operation
of the equipment. The Husky dimensions can be found in Fig. 2.
With a width of almost 1m and a generous amount of ground
clearance, the vehicle is able to get over large obstacles with ease,
due to its 330 mm lug tread tires with high-torque 4 × 4 drive,
which provide great traction and minimize slip. Thus, the Husky
A200 is suitable for traversing extreme terrains, operating with
confidence in sand, snow, mud and dirt. Being a skid steered
vehicle, the robot base does not have axles connecting the left and
right wheels. Instead, the two wheels on one side are connected
and rotate independently of the other side, similarly to tracked
vehicles. The difference in rotation causes the vehicle to skid and
turn in the direction of the slower wheels. Skid steered systems
have greater traction on the surface, being particularly suited for
rough terrains. However, the performance of the vehicle strongly
depends on the surface of the terrain and speed of the vehicle, since
skidding may cause unpredictable power requirements because
of terrain irregularities and nonlinear tire–soil interaction. We
address the power model issue later in Section 3.4.

The base platform includes front and rear bumper bars, which
can act as secondary payload mount or used to lift and trans-
port the robot. In terms of speed and performance, the robot base
withstands a maximum payload of 75 kg over challenging out-
door terrains, reaching speeds of up to 1.0m/s, and being able to

3 http://www.clearpathrobotics.com/husky/features.
climb slopes of up to 45°. The Husky base is equipped with high-
resolution quadrature encoders with 200.000pulse/m. It can be
controlled using multiple options such as direct voltage, wheel
speed or kinematic velocity, providing the flexibility for specific
research objectives and application requirements. Control can eas-
ily be performed using LabView, C++, Python and the Robot Op-
erating System (ROS). In this work, the ROS drivers will be used
as the adopted standard (cf. Section 3.6). Using the extruded alu-
minum payload mounting rail, and the ample internal user space,
the robot presents great flexibility for incorporating further hard-
ware, as seen in the next subsection.

3.2. Hardware and sensors

The FSR Husky is comprised of several sensors and hardware.
Most hardware is placed inside the ample user storage area
(cf. Fig. 3(a)), and most sensors are mounted on top of the elevated
device mounting structures (EDMSs) that were placed above the
aluminum rail of the robot base, as illustrated in Fig. 3(b). Below,
we describe the modules that integrate the proposed demining
robot platform, and causing its overall price to remain below
e30,000.

A diagram of all the modules, which illustrates how they com-
municate and how they are powered is presented in Fig. 4. The
robot is powered by a single 24V, 20Ah sealed lead–acid battery,
capable of delivering 1800W, which is placed in the battery com-
partment on the rear chassis of the robot. The user outputs pro-
vided are 5V, 12V, and 24V fused at 5A each. Additionally, the
Husky A200 base provides a RS232 Connector for serial port com-
munication, which interfaces with the remaining hardware via a
USB-serial adapter that we have connected to an Anker USB 3.0 9
Port Hub.

Regarding sensors, two PointGrey Flea3 GigE cameras are
placed over the front EDMS to provide real-time imaging in the
field with a resolution of 1288×964 at 30 frames per second (FPS)
and equippedwith C-mount lenses. These cameras aremounted on
ball joints on top of rails that allow adjusting the baseline and cam-
era orientation. A wide variety of computer vision algorithms [36]
can be used to perform different tasks in the field such as stereo
reconstruction, visual odometry localization, tracking of the clear-
ance mine detecting systems, detecting trails and obstacles, and
more.

Additionally, an Xsens MTi-300 Inertial Measurement Unit
(IMU) containing gyroscopes, accelerometers andmagnetometers,
provides 3D orientation, acceleration and rate of turn to the FSR
Husky. This component features vibration-rejecting gyroscopes
and a novel sensor fusion algorithm that overcomes limitations
in Kalman filtering, named Xsens Estimation Engine (XEE). It also
has a 1.0° accuracy in roll, pitch and yaw measurements. This
equipment enables us to track the robot orientation in 3D, and can
optionally be used to control and stabilize the cameras.

A very useful sensor for outdoor navigation is a Global
Positioning System (GPS) unit. The FSR Husky is equipped with
the u-blox NEO-6P GPS, which combines the high performance of

http://www.clearpathrobotics.com/husky/features


130 D. Portugal et al. / Robotics and Autonomous Systems 70 (2015) 126–144
(a) Robot hardware inside the storage area. (b) Sensors and hardware mounted on top of the robot base.

Fig. 3. Hardware and sensors of the FSR Husky.
Fig. 4. The FSR Husky schematic. (1) The Alfa Tube2H is powered over a PoE
module. (2) The BRIX is powered over a 19 V DC/DC converter.

the u-blox 6 position engine with Precise Point Positioning (PPP)
technology. It yields extremely high levels of position accuracy in
static and slow moving applications. The GPS unit is attached on
the rear EDMS, being connected to an omnidirectional antenna. In
order to further improve the estimation of latitude and longitude
derived from GPS, we also have the possibility to use Real-Time
Kinematic (RTK) satellite navigation, to provide global positioning
with centimeter-level accuracy. To this end, the FSR Husky needs a
reference base station, as shown in Fig. 5. The base station is placed
on a single reference point, providing real-time correction to the
robot by re-broadcasting the phase of the carrier that it observes.
The robot then compares its own phase measurements with the
one received from the base station, allowing it to calculate their
relative position. Our base station is composed of a tall tripod and a
housing containing the base station receiver, which communicates
via USB with a base station computer that relays the raw GPS
data to the robot via WiFi. Later in Section 4.1, we describe the
localization system, which combines the GPS, IMU and Odometry
outputs in an Extended Kalman Filter (EKF).

Another key sensor incorporated in the FSR Husky is the SICK
LMS111 Laser Range Finder (LRF). This is a commonly used sensor
in Robotics for distance sensing, obstacle detection, navigation
and mapping. It scans the environment using laser beams to
determine the distance to objects and build 2D representations
Fig. 5. The GPS-RTK reference base station.

of the environment. The maximum range of the SICK LMS111 is
20 m at 50 Hz, with a field of view (FOV) of 270° and a resolution
between 0.25° and 0.5°. The SICK laser, which weights 1.1 kg is
mounted on a FLIR PTU-D46 pan and tilt that allows for the laser to
produce point clouds of 3D space instead of only a 2D scan slice.
The pan and tilt unit (PTU) is designed for high-speed, accurate
positioning of lasers up to 2.7 kg at speeds up to 300°/s, with 0.051°
of resolution.

In terms of communication, an 8 port Netgear GS108T-200 Gi-
gabit Ethernet (GigE) switch with a 16 Gbps full duplex bandwidth
provides Ethernet interface, and the aforementioned powered USB
3.0 hub at 5 Gbps provides USB interface. These two modules are
in charge of internal communication, enabling the interaction be-
tween all sensors andhardware of the robot. Communication to the
outside is accomplished using an Alfa Tube 2H access point. The Al-
faTube 2H is an outdoor WiFi access point, which is equipped with
a 2.4 GHz and 9 dBi long range outdoor omnidirectional Antenna,
being placed on the rear EDMS. This equipment enables the per-
sistent connection of the robot to an external computer (usually
the base station computer), receiving feedback and retrieving field
data for online and offline analysis.

The host computer chosen to process all data and run the
developed software is the ultra compact Gigabyte BRIX. The small-
sized computer easily sits in the palm of one’s hands without
compromising raw power, with an Intel Core i7-3537U at 3.1 GHz,
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Fig. 6. Robot mine clearance arm with the Vallon VMP3 metal detector.

8 GB DDR3 RAM and a 60 GB solid-state disk (SSD). The BRIX
includes a DC IN connection, USB 3.0, andGigE ports, used to power
the BRIX over a 19V DC/DC converter, and connect it to the Anker
USB hub and Netgear switch. The BRIX is placed inside the storage
area, which is spacious enough to fit further sensors and hardware,
depending on the application.

Finally, themobile robot is equippedwith a landmine detecting
sensor attached to an actuator arm. The chosen sensor for detecting
AP mines is a Vallon VMP3 three-coil, pulse induction MD. The
Vallon VMP3 was modified to fit in the robotic arm of the FSR
Husky. The MD is mainly composed by two parts: (1) the antenna
which is attached to the arm and; (2) the SPU (Signal Processing
Unit) which is fitted to the back of the robot under the EDMS
holding the WiFi and GPS antennas. The Vallon VMP3 can be
powered using the USB charging port and its processing unit
contains a serial port, which makes it possible to read the output
(NMEA readable text datasets) by establishing a link between the
MD and a computer via a RS232 interface at 115.2 kbit/s. Each coil
provides 3 channels of data at a rate of 10 Hz, thus the total data
flows at a rate of 30 Hz.

The MD is mounted on a 2 DOF robotic arm that sweeps the de-
tector above the ground. The mine clearance arm gives the robot
the ability to move the metal detector antenna from side to side as
well as to lift it or bring it closer to the soil. The arm is mounted
at the front of the FSR Husky, as depicted in Fig. 6. The mine clear-
ance arm works by controlling the Nanotec PD4-N60, which is a
high-pole DC servo motor based on a stepper motor. The motor
is programmable, being ideal for distributed or multi-axis applica-
tion. In order to interfacewith the linear actuator of the arm so as to
control it, we use a Pololu Jrk 21v3motor controller with feedback.
The auxiliary serial port of the Pololu Jrk is used to communicate
with the Nanotec PD4-N60 via a RS485 serial communication in-
terface. Furthermore, an integrated reduction gear with 1:15 gear
ratio, and a second stage with 1:1.67 gear ratio, enable the mo-
tor to maintain a high torque. The arm has 0.85m of length from
the drive shaft to the center of the coil, it is composed of carbon
and polyamide parts and non-metallic material both to reduce the
overall weight and prevent any interference with the metal detec-
tor. Additionally it can be swept up to 180° in the horizontal plane,
with a maximum end effector height of 580 mm and minimum
height of −180 mm. As safety interlock, a limit switch is placed
on the largest cogwheel to guarantee the full 180° of arm’s motion,
with a single Hall effect sensor and two magnets.

3.3. Kinematics

Awheeled robot usually has several motors where each one ro-
tates a wheel. The velocity of the ith wheel is defined as Vi = ρωi,
Fig. 7. Kinematics of the FSR Husky robotic platform.

where ρ is the wheel’s radius and ωi is the respective motor’s an-
gular velocity. Similarly, the velocity of the arm sweeping is given
by Va = bωa, where b is the length of the arm andωa is the angular
velocity of the arm motor. Dynamic models for skid-steering may
result too costly for real-time motion control and dead-reckoning.
Bearing this in mind, we make use of known geometric relation-
ships since it has been shown that the movement of these type of
vehicles can be estimated accurately using knowledge of the In-
stantaneous Center of Rotation (ICR) locations [37,38]. We assume
that the ground mobile robot moves in 2D space in a skid-steering
configuration, meaning that the wheels do not steer, the distance
between wheels and the distance between axes are always the
same, and the velocities of the two wheels on the same side of the
robot are equivalent, similarly to a tracked robot. Thus, it is possi-
ble to represent the robot’s velocity by three variables: vx, vy, and
ωz , where v = (vx, vy) is the vehicle’s translational velocity with
respect to its local frame (with the Y axis aligned with the forward
motion direction), and ωz is its angular velocity.

Let Vl, and Vr represent the linear velocities of the left and right
pair of wheels respectively. Then, direct kinematics can be stated
as:
vx
vy
ωz


= A ·


Vl
Vr


. (1)

In order to obtain the kinematic relation matrix A, we follow
the procedure described in [39] by using knowledge of the ICR
locations. Considering the local coordinates shown in Fig. 7, the ICR
of the vehicle during rotation is expressed as ICRv = (xICRv , yICRv ),
and the ICRs for the left and right wheels are defined as: ICRl =

(xICRl , yICRv ) and ICRr = (xICRr , yICRv ). Note that the yICRv coordinate
is common to the three points, since they lie on a parallel line to the
localX axis. The geometrical relation between the ICR locations, the
vehicle velocity, and the wheels velocity is:

xICRv = −
vy

ωz
, (2)

xICRl =
αl · Vl − vy

ωz
, (3)

xICRr =
αr · Vr − vy

ωz
, (4)

yICRv =
vx

ωz
. (5)
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The nominal wheel speeds are affected by correction factors
(αl, αr ), which account for mechanical issues such as tire inflation
conditions. These values should ideally be close to 1. However,
they can be adjusted by measuring the actual traveled distance
by the robot in straight motion or more precisely with other
experimental setups such as those described in [39]. The values of
xICRv range within [−∞,+∞]. However, the values of xICRl , xICRr ,
and yICRv remain bounded. This boundedness is limited to the case
of kinematic motion, in which centrifugal dynamics are neglected
and slippage is due only to steering. Thus, bymanipulating Eqs. (3)–
(5), we obtain the following relationships:

vx = −
−yICRv · αl · Vl + yICRv · αr · Vr

xICRr − xICRl
, (6)

vy = −
xICRr · αl · Vl − xICRl · αr · Vr

xICRr − xICRl
, (7)

ωz = −
−αl · Vl + αr · Vr

xICRr − xICRl
. (8)

Finally, the general kinematic relation matrix A is given by:

A =
1

xICRr − xICRl
·


−yICRv · αl yICRv · αr
xICRr · αl −xICRl · αr

−αl αr


. (9)

3.4. Energy consumption

The FSR Husky sealed lead–acid battery allows the robot to op-
erate continuously around 3h. Real-timemonitoring of the instan-
taneous robot power consumption is available using the provided
software. As a consequence, we have implemented a power esti-
mation model according to key physical motion variables. To this
end, let us consider that Pm(ω, θ) is the consumption of a mo-
tor moving at angular velocity ω, and with angular acceleration
θ =

dω
dt . According to [40], a polynomial fitting is a good approach

tomodel the power of themotors since the behavior of these can be
represented by an unbounded function. In [41], the power model
of a basic motor was modeled as a second-degree polynomial ofω,
in [42] it was shown that a sixth degreemodel would bemore suit-
able. From the experimental data collected, e.g. Fig. 8, we find that
a machine learning approach is more realistic. Therefore we have
trained a Bayesian networkwith four leaf nodes: acceleration—acc,
jerk—jer, angular velocity—vel, and robot pitch—pit (acquired by
the IMU unity mounted on the robot). The influence of each vari-
ablewas trained into the Bayesian network using datasets acquired
in field tests with our robot. The power model can be expressed,
applying Bayes rule as:

P(kW |acc, vel, jer, pitch)

=
P(acc|kW ) · P(vel|kW )P(jer|kW ) · P(pit|kW ) · P(kW )

P(acc, vel, jer, pit)
, (10)

wherein we assume that there is no prior information about the
robot’s power. Hence, the prior factor P(kW ) is defined as uniform.
As for the likelihooddistributionsmodeling the variables according
to power, these were obtained by training the Bayesian Network,
and are presented in Fig. 9. Additionally, the denominator term
P(acc, vel, jer, pitch) is regarded as a normalization factor, being
often omitted for simplification purposes [43]. A comparison be-
tween themeasured power and the estimated power by ourmodel
in a typical robot run is shown in Fig. 10. The mean absolute error
of the estimation is ε = 0.0078 kW.

Moreover, once considering that the model presented in Fig. 10
is the power model of the wheels’ motors (Pmw), in a similar
Fig. 8. Data collected from the robot during a field trial.

manner we found the power model of the arm motor Pma; and the
power consumption cost function of the robot can be defined as:

4
i=1

Pmw


ωwi,

dωwi

dt


+ Pma


ωa,

dωa

dt


. (11)

3.5. Arm sweeping

In this section, we address the problem of optimizing the com-
bined motion of the mobile platformwith the mine clearance arm.
Refer to Fig. 11 and let θ be the range of rotation of the arm. The
arc traveled by the sensor is δ = θ · b, thus with the robot stopped
during a full arm sweep the sensor travels 2δ. Let∆ be the length of
the sensor, in order to cover all the groundwithout gaps. Themax-
imum distance that the robot can move forward during a full arm
sweep that takes t seconds is∆. Considering that the arm angular
velocity is given by:

ωa =
2θ
t
. (12)

We can relateωa with the robot’smaximum linear velocity vmax by:

vmax =
∆

t
⇒ vmax =

∆ωa

2θ
. (13)

Besides, this shows that even thoughwe could set θ = π , which
is themaximum range of rotation supported by themine clearance
arm, when moving forward the arm angle of sweeping (θ ) affects
the maximum velocity of the robot so as to guarantee a full area
coverage with minimal overlap.
Case Study. In our robot, each coil of themetal detector is equipped
with one chemical sensor, so the arm sweeping movement gener-
ates simultaneously 3 lines of dual data. These dual sensor data is
fused and interpolated based on the method proposed in [26], and
generates an arc strip of covered area in front of the robot with
length∆ (see Fig. 11). The application of optimizing the motion of
the platform with the sweeping arm in our case yields the follow-
ing constraints:

• The length of the dual sensor is∆ = 0.62 m.
• The width of the arm is b = 0.85 m.
• The minimum width of the covered strip γ is equal to the

robot’s width, i.e. γmin = 0.67 m.
• According to theMD’s documentation, the linear velocity of the

arm Va should be limited to 1/2m/s. The study presented in [44]
confirms that this value is the maximum acceptable speed for
proper sensor functionality.
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(a) Likelihood distribution P(acc|kW ). (b) Likelihood distribution P(vel|kW ).

(c) Likelihood distribution P(jer|kW ). (d) Likelihood distribution P(pit|kW ).

Fig. 9. Likelihood distribution of the significant variables of the proposed power model.
Fig. 10. Comparison between measured power and estimated by the proposed
model.

Considering these constraints, the maximal angular velocity of
the arm is given by:

ωa =
Va

b
⇒ ωa =

0.5
0.85

= 0.588 rad/s. (14)

Therefore, relationship (13), becomes:

vmax =
0.62 × 0.588

2θ
⇒ vmax =

0.182
θ

. (15)
As referred before, themaximum range of rotation of the arm is
θmax = π , and the minimal range is given by:

tan
θmin

2


=

γmin/2

b
= 0.3941, (16)

θmin

2
= arctan(0.3941)

= 0.3754 rad ⇒ θmin = 0.7508 rad (43.02°). (17)
By setting the range of rotation of the arm θ ∈ [0.7508, π], we

can use (15) to extract the theoretically optimal linear velocity of
the robot that guarantees that the arm scan will perform without
gaps. Below some indicative values of θ , and the corresponding
vmax are presented:
θ = π/4 (45°), vmax = 0.232m/s.
θ = π/3 (60°), vmax = 0.174m/s.
θ = π/2 (90°), vmax = 0.116m/s.
θ = π (180°), vmax = 0.058m/s.

It is our belief that the sweeping arm will not pose severe
constraints on the coverage algorithm, apart from the maximum
velocity that the robot can travel in order to guarantee that the area
is covered by rely on several turns in place are not advised so as to
avoid redundant and inefficient coverage.

3.6. Software and ROS integration

Despite the existence of many different robotic frameworks
that were developed in the last decade, ROS [45] has already
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Fig. 11. Combined robotic movement and arm sweeping.

become the most trending and popular robotic framework, being
used worldwide due to a series of features that it encompasses
and being the closest one to become the de facto standard that
the robotics community urgently needed. The required effort to
develop any robotic application can be daunting, as it must con-
tain a deep layered structure, starting from driver-level software
and continuing up through perception, abstract reasoning and be-
yond. Robotic software architecturesmust also support large-scale
software integration efforts. Therefore, usually roboticists end up
spending excessive time with engineering solutions for their par-
ticular hardware setup [46]. In the past, many robotic researchers
solved some of those issues by presenting a wide variety of frame-
works to manage complexity and facilitate rapid prototyping of
software for experiments, thus resulting in several robotic soft-
ware systems currently used in academia and industry. Those
frameworks, such as Player [47] or CARMEN [48], were designed in
response to perceived weaknesses of other available frameworks
or to place emphasis on aspects which were seen as most impor-
tant in the design process. ROS is the product of trade-offs and pri-
oritizations made during this process.

The major goals of ROS are hardware abstraction, low-level
device control, implementation of commonly-used functionalities,
message-passing between processes and package management.
ROS promotes code reuse with different hardware by providing a
large amount of libraries available for the community, as well as
tools for 3D visualization (rviz), recording experiments and playing
back data offline (rosbag), andmuchmore. Regular updates enable
the users to obtain, build, write, test and run ROS code, even
across multiple computers, given its support for many processors
running distributedly. Additionally, since it is highly flexible,with a
simple architecture, ROS allows reusing code fromnumerous other
open-source projects, such as Stage [49], Gazebo [50], Open Source
Computer Vision—OpenCV [51], and others. As a result, integrating
robots and sensors in ROS is highly beneficial, since it strongly
reduces the development time.

The FSR Husky is fully integrated in the ROS framework. The
software has beendeveloped in C++programming language using
the stable distribution ROS Hydro, and the code is free and open-
source.4 Fortunately, ROS provides seamless integration of new
sensors without needing hardware expertise, thus we make use

4 Available at: https://github.com/goncabrita/fsr_husky.
of several drivers available by the ROS community for common
sensors, such as the Xsens Mti-300 IMU and the SICK LMS 111
LRF, as well as Clearpath’s driver for the robot base, which greatly
reduced the overall time spent in developing software. As for the
other sensors, ROS drivers have been developed for the PointGrey
GigE cameras, the FLIR Pan–Tilt Unit D46, the Vallon VMP3 MD,
and the u-blox NEO-6P GPS, which is compatible with rtklib5 for
precise point positioning through RTK-GPS. The implementation
of such drivers place virtually all complexity in libraries, only
creating small executables, i.e. ROS nodes, which expose library
functionalities to ROS.

Given that the whole system is the result of an integration
of several different modules, when starting up the robot it will
automatically check which components are plugged in and start
their respective driver, which become responsible for publishing
sensor data in dedicated ROS topics. The robot’s communication
light on the rear panelwill change fromred to green, indicating that
ROS is up and has established communicationswith the FSRHusky.
Note that all the software is run in the onboard computer Gigabyte
BRIX. Typically, we establish a connection by WiFi to an external
computer in order to run the ROS 3D visualizator, rviz (cf. Fig. 12),
for diagnostics and checking the correct operation of all modules.

Besides the integration of the sensors in ROS, we have also de-
veloped a teleoperation node to drive the robot around, because
in order to lift the robot using the front and rear bars, at least two
people are necessary. Teleoperation is particularly useful to park
the robot or to test its functionalities in a specific place. To this end,
we use a Xbox joystick, which can communicate with the robot in
ranges up to 9m via awireless gaming receiver adapter that is con-
nected in the USB hub inside the robot. The teleoperation node can
multiplex any navigation software being run on the robot, mean-
ing that while driving autonomously, if the remote control is used,
autonomous navigation is interrupted. This concept is shown in
Fig. 13.

During the development phase of intelligent robotic algorithms,
it is important to continuously test various aspects of the approach.
Additionally, it may not be always possible to conduct field trials
due to weather conditions, maintenance, etc. Therefore, the robot
should be mimicked using a realistic simulation-based tool, which
provides training to the developers and operators in nominal and
extreme situations, reducing the chances of erroneous behavior in
the real field. Having this in mind, we use the 3D Gazebo simulator
as illustrated in Fig. 14 to model, to some extent, the robot’s
dynamics and kinematics, terrain, robot–terrain interactions, and
landmine detection sensors. Noise modeling is considered in all
sensors of the robot, which in turn are simulated in Gazebo. We
have specified white noise for every sensor, defined according
to their datasheets. The simulator is configured just like the real
robot, which means that a program that runs in Gazebo also runs
in the real robot without modifications, and from our experience
generally the output is similar in both the virtual and the real
world, except for a few issues that are reported in Section 5.2.

In the next section, we describe intelligent capabilities like
localization, navigation, perception, and mine detection, which
underpin the use of the robot in outdoor demining missions.

4. Robot capabilities

4.1. Extended Kalman Filter (EKF) for localization

Aiming to achieve robust autonomous navigation in unstruc-
tured outdoor environments, a set of sensors has been selected to
be integrated in this work:

5 http://www.rtklib.com.

https://github.com/goncabrita/fsr_husky
http://www.rtklib.com
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Fig. 12. The FSR Husky robot model on rviz.
(a) Xbox Joystick to control the FSR Husky. (b) Multiplexed Teleoperation Scheme.

Fig. 13. Teleoperation of the FSR Husky.
• Inertial Measurement Unit (composed by accelerometers,
magnetometers, gyrometers),

• Global Positioning System (RTK-GPS one at base station,
another at the rover),

• Robot Wheel Odometry.

Theoretically it is possible to perform IMU-only based local-
ization. However, the accelerometers cannot distinguish between
acceleration induced by gravity and acceleration caused by other
forces over the vehicle body. Thus, in practice unbounded errors
are inevitable during long term operation. Often a GPS receiver is
used to correct the estimates provided by the IMU. On the other
hand, GPS receivers may temporarily fail due to weather and en-
vironmental conditions, e.g. tree shadows and clouds. The use of
data frommotion sensors to calculate the robot’s position iswidely
known asOdometry estimation. Inwheeled robots, a series ofmea-
surements of the rotations of the wheels can be used to track the
robot’s 2D pose (x, y, ψ). In the case of skid-steering robots such
as the FSR Husky, they usually exhibit agile maneuverability to the
extent of turning in place, about their center of gravity. However,
when compared to other steering methods, they are not so accu-
rate, since the wheels that are skidding are not tracking the exact
movement of the robot. Hence, odometry estimation accumulates
error over operation time especially in rough terrains. Neverthe-
less, in short sampling intervals, particularly during straight mo-
tion orwhen the quality of the receivedGPS signal is low, odometry
can be a precious input for the localization estimation. The lit-
erature regarding IMU/GPS/Odometry integration is extensive,
cf. [52,53].

In the proposed 6D localization system (3D position and 3D ori-
entation) we make use of a classical Extended Kalman Filter (EKF),
which is an adaptation of the ROS Robot Pose EKF implementa-
tion,6 considering the IMU and GPS as absolute measurement sen-
sors. The filter has the following discrete time, nonlinear stochastic
model:

xk = f (xk−1,uk−1)+ wk−1, (18)

yk = h(xk)+ vk, (19)

with x ∈ Rn,u ∈ Rm and y ∈ Rp being state, input and mea-
surement variables. It is assumed that wk and vk are uncorrelated,
gaussian random noise, with zero mean and Qk and Rk covariance
matrices. They model uncertainty on process and measurement
models given by Eqs. (18) and (19), respectively. uT

k represents the
measurements provided by IMU and f (·, ·) represents a discrete
time transition function. xk is the system state space variable at dis-
crete time tk = kT , with T being the IMU sampling period. In the
measurement process (19), bothmeasurement yk and function h(·)

6 http://wiki.ros.org/robot_pose_ekf.

http://wiki.ros.org/robot_pose_ekf
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Fig. 14. 3D Gazebo simulation of the FSR Husky in an outdoor environment.
change according to which measurement is available at time tk. In
thiswork, three independent types of observations are considered:
direct measurement of the vehicle’s 3D orientation given by IMU
(ϕ, θ, ψ), GPS 3D position measurements (x, y, z), and Odometry
2D pose measurements (x, y, ψ). The sources operate at different
rates and with different latencies, continuously providing an esti-
mate of the covariance on the measurement.

Regarding the implementation of our specific filter, the covari-
ances are provided by the sensor drivers used. These can either be
static matrices, e.g. IMU, or dynamic over time according to the ex-
tracted measurements, which is the case for GPS and Odometry
readings.

In particular, the XSens MTi-300 IMU covariance is:

RIMU
=

σ 2
ϕϕ σ 2

ϕθ σ 2
ϕψ

σ 2
θϕ σ 2

θθ σ 2
θψ

σ 2
ψϕ σ 2

ψθ σ 2
ψψ


=

0.0174 0 0
0 0.0174 0
0 0 0.1571


. (20)

The Odometry covariance differs when the robot is in motion
(OdomM), or when it is stopped (OdomS). Namely:

ROdomM
=

σ 2
xx σ 2

xy σ 2
xψ

σ 2
yx σ 2

yy σ 2
yψ

σ 2
ψx σ 2

ψy σ 2
ψψ

 =

0.001 0 0
0 0.001 0
0 0 106

 , (21)

ROdomS
=

σ 2
xx σ 2

xy σ 2
xψ

σ 2
yx σ 2

yy σ 2
yψ

σ 2
ψx σ 2

ψy σ 2
ψψ

 =

10−9 0 0
0 0.001 0
0 0 10−9

 . (22)

Finally, the GPS covariances are highly dynamic, being com-
puted online using the rtklib software, which processes the u-blox
NEO-6P GPS sensor data. Below we present a typical covariance
matrix, by averaging the values over a field trial with the robot:

RGPS
=

σ 2
xx σ 2

xy σ 2
xz

σ 2
yx σ 2

yy σ 2
yz

σ 2
zx σ 2

zy σ 2
zz


=

 0.00022 0.00018 −0.00012
0.00018 0.00143 −0.00162

−0.00012 −0.00162 0.00342


. (23)
The estimation system uses the available sensors, offering
loosely coupled integration of different sources, which can appear
and disappear over time.

4.2. Navigation and perception

The FSR Husky leverages from autonomous navigation by
following the approach presented in [54], which is available in
ROS via the navigationmetapackage. Thisway, given any physically
reachable goal, the robot should be able to autonomously navigate
to that goal, avoiding collisions with obstacles on the way by
following a series of steps. The navigation system at the high level
is fairly simple: it takes in a navigation goal, data from sensors, and
localization information, and outputs velocity commands that are
sent to the mobile robot base.

Autonomous navigation of the FSR Husky can be achieved with
orwithout an a priorimap. Usually in field trials, the robot is initial-
ized without a map, knowing only obstacles that it has perceived
with its sensors, and global planning will be fairly optimistic, pos-
sibly including areas that it has not yet visited which may traverse
unknown space, potentially intersecting unseen obstacles. Asmore
information about the world is acquired, the robot may replan in
order to avoid collisions with obstacles. On the other hand, when
a static representation of the environment is provided, the robot
will follow more informed plans considering distant obstacles.

The navigation algorithm includes several interesting features.
For instance, RandomSample Consensus (RANSAC) is applied to fil-
ter out Light Detection And Ranging (LIDAR) readings that are in-
valid due to hardware limitations, such as false positives generated
by veiling effects. Also, a planar Costmap, which is initialized with
the static map (if available), is used to represent obstacle data and
the most recent sensor data, in order to maintain an updated view
of the robot’s local and global environment. Inflation is performed
in 2D to propagate costs from obstacles out to a specified radius
in order to conservatively avoid collisions, as illustrated in Fig. 15.
The global planner uses an A∗ algorithm that plans in configura-
tion space computed during obstacle inflation in the Costmap, not
taking into account the dynamics or the kinematics of the robot,
which are considered instead by the local planner, which gener-
ates velocity commands for the robot, safely moving it towards a
goal. The planner cost function combines distance to obstacles, dis-
tance to the path produced by the global planner, and the speed at
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Fig. 15. Inflated obstacle in the robot’s local costmap during outdoor autonomous navigation.
Fig. 16. Point cloud self-filtering.
which the robot travels. Finally, a few recovery behaviors can be
performed, e.g. due to entrapment. The robot will perform increas-
ingly aggressive behaviors to clear out space around it, and check
if the goal is feasible.

Moreover, the FSR Husky can take advantage of its advanced
sensor suite to intelligently perceive its surrounding environment.
For example, the robot is able to build a 2Dmap of the environment
while navigating within it, using the 20m range LRF together with
a Simultaneous Localization and Mapping (SLAM) approach. In
addition, using the PTU unit and the LRF, 3D point clouds of the
environment around the robot can be obtained. Note however, that
when tilting the PTU, the LRF may ‘‘see’’ the robot’s arm, therefore
we have implemented a self-filtering system, which is illustrated
in Fig. 16. In order to achieve this, each 2D laser scan is converted
into a point cloud structure. During this conversion, laser scans are
filtered to remove outliers. Afterwards, self filtering is conducted
by clearing the points that intersect with the robot’s arm. Since
the arm may be moving, self filtering is done based on the robot
3D model and the transform to the arm’s main frame. Finally, the
resulting filtered point cloud is passed to a point cloud assembler
module, which fuses all the point clouds obtained in between the
extreme positions of the laser while tilting.

The stereo pair of cameras also enables the robot to extract
interesting features about its surroundings. In Fig. 17, we show the
result of running a feature-based stereomatching algorithmduring
an outdoor field trial, using frames acquired from the PointGrey
Flea3 GigE cameras of the FSR Husky. This was done by running
the scale-invariant feature transform (SIFT) algorithm available in
OpenCV, which is the primary computer vision library in ROS. In
the future, we also intend to use the stereo pair of cameras to
perform visual odometry to provide another source of input to our
localization system.
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(a) Features in the left camera. (b) Features in the right camera.

Fig. 17. SIFT-based stereo matching in an outdoor field trial.
4.3. Arm control and metal detection

Similarly to robot navigation, it is also crucial to control and
perform arm navigation in order to scan the ground for mines. To
this end, we have integrated the FSR Husky’s mine clearance arm
with themoveit!mobilemanipulation software for ROS [55], which
provides planning and trajectory execution functionalities, taking
into account the structure and mobility constraints of the 2 DOF
arm. Pose goals are continuously sent to the arm during operations
in order to guarantee smooth sweeping. Furthermore, using this
software arm joints can easily be controlled, as well as sweeping
speed and height of the arm.

As referred previously, the MD is mounted on the robotic arm
that sweeps the detector above the ground. Pulse Induction MDs
send powerful, short pulses of current through a coil of wire about
a thousand times per second. Each pulse generates a briefmagnetic
field. If the metal detector is over a metal object, the pulse creates
an oppositemagnetic field in the object.When thepulse’smagnetic
field collapses, causing the reflected pulse, themagnetic field of the
object makes it take longer for the reflected pulse to completely
disappear. In a pulse induction metal detector, the magnetic fields
from target objects affect the reflected pulse, making it last longer
than it would in the absence of ametal object. High speed electron-
ics monitor the length of the reflected pulse. By comparing it to
the expected length, the circuit can determine if another magnetic
field has caused the reflected pulse to take longer to decay. If the
decay of the reflected pulse takes more than a few microseconds
longer than normal, there is likely a metal object present. Pulse
induction detectors do not excel at discriminating type of metal,
because the reflected pulse length of various metals are not easily
separated. On the other hand, they are useful in many situations
in which other metal detector technologies would have difficulty,
such as in areas that have highly mineralized soils. Furthermore
pulse induction systems can detect metal objects at greater depths
when compared to other metal detector technologies.

The Vallon VMP3 metal detector, shown in Fig. 18, aggregates
three coils. Each coil outputs 2 channels of raw data plus an alarm
channel. Each of the 3 channels is evaluated separately in an ana-
log switched integrator circuit. Those are A/D converted and then
filtered in the Digital Signal Processor (DSP), preprocessed and
combined to the alarm channel. Soil compensation can be accom-
plished using the following formula:

detection_alert = λ · ch1_data + (1 − λ) · ch2_data, (24)

whereλ is chosen so that detection_alert = 0,when nometal sam-
ples are present in the soil (ch1_data = ch1_zero, and ch2_data =
Fig. 18. The original Vallon VMP3, before being modified to fit the arm.

ch2_zero; with ch1_zero ≠ 0 and ch2_ zero ≠ 0). In order to cal-
culate a signature φ of a metal sample, the following formulas are
used:

β =
ch2_data − ch2_zero
ch1_data − ch1_zero

, (25)

φ =
β

1 − β
. (26)

Different metals should have different signatures, especially for
simple targets. However, in practice, signature values fluctuate
especially with complex shaped targets.

In the next section, we conduct experiments to validate the
robot’s capabilities in an outdoor minefield coverage mission.
Furthermore, we provide an overview of the Humanitarian
Robotics and Automation Technology Challenge (HRATC 2014),
which consisted of several minesweeping trials with the proposed
robotic system over long periods of time.

5. Results and discussion

5.1. Coverage of minefields: preliminary work

Area coverage is the problem of sensing all points inside a
given space with a certain sensor. In this work we deploy the FSR
robot in a bounded minefield and have the robotic arm sweeping
continuously the Vallon MD from side to side over the ground.
This is done at a constant height in order to sense surrogate mines
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(a) Autonomous coverage trajectory followed by the FSR
Husky.

(b) Output of the mine detection module.

Fig. 19. Coverage field trial.
buried in shallow depth. These surrogate mines are composed of a
small plastic box with a metal sphere inside with 1 cm of diameter
and 5g of weight. This was chosen accordingly to literature on
mines with minimum metallic content found on warzones. The
goals of this preliminary test are: (i) evaluate the measurements
obtained so as to analyze highly probable location ofmines through
thresholding; (ii) assess the continuous localization of all modules
of the system, composed by detected mines, MD sensor, sweeping
arm, and robotic platform; (iii) draw conclusions for an upcoming
implementation of minefield coverage strategies with improved
terrain traversability, and robust detection against false positives
or false negatives in the short-term future.

A two dimensional target area of size 10 × 5m was defined
and marked on the field. The corners of this area are identified by
axis labels in the rviz window illustrated in Fig. 19(a). The robot
was instructed to follow a lawn mowing trajectory autonomously.
The arm movement is tracked by the robot, thus the data col-
lected by the MD is indexed in space. This data collected by the
MD is pre-processed in order to generate a single scalar represent-
ing the amount of metal sensed by the device, as described by (24).
We have used this large amount of spatial information to gener-
ate a metal distribution map, as depicted in Fig. 19(b). Note that
the transformation from the robot’s arm polar coordinates acqui-
sitions to a regular Cartesian grid is accomplished by Kriging inter-
polation [56], a method commonly used in geostatistics. Kriging
is based on the notion that the value at an unknown point in
space should be the average of the known values at its neighbors
weighted by the variogram of the distance to the unknown point.
The interpolated distribution map that was generated also shows
that complete coverage was accomplished by having the robot fol-
low a lawn mowing trajectory with continuous arm sweeping, as
there was no unsearched space left within the target area.

These results validate the autonomous navigation of the robotic
platform, whose velocity commandswere generated by the simple
coverage algorithm tested, aswell as the proposed localization sys-
tem, which in this case used GPS-RTK to providemore precise esti-
mations of the robot’s pose, and consequently, arm andMD sensor
pose. The integration of the outdoor navigation with the localiza-
tion system allowed for the accurate trajectory followed by the
robot. Furthermore, this experimental trial also validates the mine
detecting system. Note that in Fig. 19(b), we have used the hue
space color scale to represent the detection values, and those that
are superior to the threshold specified by the dashed line in the
scale were enlarged for visualization purposes. The rviz visualiza-
tion software for ROS was used to mark in real-time the places
where mines are precisely located. The positions given by detec-
tions superior to the threshold are consistent with the positions
where surrogate mines were buried. Nevertheless, 7 different de-
tections were reported, as illustrated in Fig. 19(b), because 2 pairs
of detections are in fact very close spatially. In reality, these were
only 2 surrogated mines (instead of 4), out of a total of 5 mines
deployed. Therefore, with this technique we have achieved a 100%
detection rate plus 2 false positives. It is noteworthy that all sur-
rogate mines are equivalent. However some mines were easier to
identify (higher detection certainty) than others. This is due to sev-
eral factors, such as magnetic properties of the soil, burial depth,
and presence of metal fragments in the soil. In addition, significant
variations of the detection values within the target area, which are
near to the threshold defined, show that a more robust method is
necessary to filter out false positive detections.

Although the main focus in this section was the integration
of the arm with the robot, and to assess the detection capability
provided by the Vallon VMP3 MD, we intend to integrate further
detection technologies in the robotic arm. Thus, we are currently
evaluating the use of a GPR and an artificial nose for explosive
vapor detection, to explore complementary multimodal sensor
features, and provide a more robust detection strategy based on
probabilistic data fusion. Furthermore, the output of the mine
detection system will be taken into account by the navigation
module of the robot, thus avoiding triggering the explosive devices.

5.2. An international demining challenge with the FSR Husky

Our research group has been involved in the organization of
the Humanitarian Robotics and Automation Technology Challenge
(HRATC) 2014 together with IEEE RAS-SIGHT. HRATC is an un-
precedented opportunity to enable and engage researchers from
around the world to collaborate using their skills and education to
benefit humanity, by developing new strategies for autonomous
landmine detection using a mobile ground robot. The 2014 edition
of HRATC [57] was the first event where teams from around the
world participated and tested their autonomous demining strate-
gies remotely on a real world robotic platform, the FSR Husky. A
total of 14 teams submitted their entries, and were progressively
eliminated based on the stages of the challenge. The grand finale
took place at ICRA 2014, Hong Kong, and Coimbra, Portugal re-
motely.

HRATC consisted of three stages in early 2014: simulation stage,
testing stage, and challenge stage. For the simulation stage, the
Gazebo 3D simulator described in Section 3.6 was adopted. This
is run in a Linux-based Operating System, using ROS for control-
ling the virtual robot. Using this framework, the teamswere classi-
fied according to the performance of their strategy in a simulation
scenario. The scoring metric was computed using several perfor-
mancemeasures that included number of detectedmines, number
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Fig. 20. HRATC 2014 apparatus and competition venue at the University of Coimbra.
of exploded mines, covered area, and coverage time. The best-
ranked teamswere then allowed to advance to the testing phase. In
the testing phase, the teams ran their detection and classification
strategies using ROS on the FSR Husky robot in an outdoor arena
covered by low grass, ditches and surrogate mines. The tests oc-
curred during three weeks of May 2014, and each team had three
trials to evaluate and adjust their strategy. After the third trial, four
teams have participated in the finals at ICRA 2014, consisting of
two final runs in May 31, and June 1, which were video-streamed
live over the internet from Coimbra, Portugal. The final competi-
tion environment was an open wood area with a size of 10 × 5m,
as shown in Fig. 20, and delimited by 4 GPS coordinates. The com-
petition areawasmarked byplastic tape for visualization purposes,
and a virtual fencewas deployed to stop the robots from going out-
side the competition area. Surrogatemineswere buried in the field,
along with other metal debris (coke cans, metal pieces and large
screws), and the teams were evaluated according to the scoring
metric presented below:

Score (%) = 80DS + 5 TS + 15 CR, (27)

where:

DS =
DM · (1 − EKM/TM − 0.5 EUM/TM)

DM + UCA + 0.5UUA + WMD
, (28)

TS = 1 − TT/1800, (29)

CR =
AC
TA
. (30)

In the scoring formula, DS, TS and CR have values ranging from
0 to 1, and they represent the detection score, time score and
coverage ratio. Furthermore, DM is the number of detected mines,
EKM is the number of exploded known mines, EUM is the number
of exploded unknown mines, TM is the total number of mines,
UCA stands for the undetected mines in the covered area (false
negatives), UUA stands for the undetected mines in the uncovered
area, and WDM are the number of wrongly detected mines (false
positives). Finally, TT is the total time in seconds with maximum
value of 1800, i.e. 30min, AC is the area covered, and TA is the total
area. Both AC and TA are represented in square-meters.

In order to compute the score of each team automatically, the
judge framework was developed by members of the organization
from the Federal University of Rio Grande do Sul, Brazil (cf. Fig. 21).

During the challenge, every team had the opportunity to make
use of all the robot’s sensors described previously in this paper,
as they seem fit, in order to develop their own mine detection
algorithm. Furthermore, we also provided data in real-time from
the precise localization systemdeveloped (cf. Section 4.1), a dataset
for the teams to assess the behavior of the MD over different types
of soil, optimized parameters for arm sweepingwith our robot, and
several examples onhow to control the robot in ROS. In general, the
challenge resulted in numerous trials with the FSR Husky, which
was continuously tested for long periods of time in the field.7

Fig. 21 illustrates the best trial of each team that participated
in the finals. The team Across displayed a very erratic approach, as
shown by the robot trajectory in Fig. 21(a). The US Miners team
quickly finished the trial (highest TS), however with several wrong
detections and a mine explosion (cf. Fig. 21(b)). The Geeks of the
Square Table team presented the best coverage approach (highest
CR) by following a lawn mowing trajectory with the robot, as seen
in Fig. 21(c). However they were not able to successfully detect
any of the surrogated mines. Finally, the team Orion used a spiral
coverage approach from the center of the field to the outside (see
Fig. 21(d)), being the only team that successfully detected a mine
(highest DS). Thus, they have won the challenge with a highest
score of 17.19%.

Despite the successful use of the robot by the teams in the
HRATC 2014 Challenge, especially in terms of robot navigation
in the field and arm control, the winning approach was still far
from full success, given that only one of the five mines were
correctly detected by the grand winner. This shows that there is
much room to improve in next year’s challenge. Namely, the teams
may need more time to prepare the challenge, ROS expertise is
highly advised, the teams may benefit from a longer testing stage
with the robot in the field before the finals, and possibly from
additional datasets with themine detection system so as to further
understand how to correctly identify mines.

The three best-ranked teams received a cash prize together
with a certificate and a plaque. During the competition, important
lessons for the organizing teamwere also learned, which allows us
to plan future developments with the robot.

First of all, the timebetween arriving to the field and starting the
tests is usually around 30–45 min. This happens due to the techni-
cal equipment that is necessary to carry and setup when conduct-
ing field trials (e.g. GPS-RTK station, base station computer, WiFi,
etc.), and because the FSR Husky is a complex system, so it is nec-
essary to guarantee that all independent components will work
in unison during robot operation. In order to address this issue
we plan to develop a simple and intuitive graphical user interface

7 Several footage of the finals are available at: http://isr.uc.pt/HRATC2014/
Movies.

http://isr.uc.pt/HRATC2014/Movies
http://isr.uc.pt/HRATC2014/Movies
http://isr.uc.pt/HRATC2014/Movies
http://isr.uc.pt/HRATC2014/Movies
http://isr.uc.pt/HRATC2014/Movies
http://isr.uc.pt/HRATC2014/Movies
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(a) Team Across (4th Place), University of Zagreb, Croatia. (b) US Miners Team (3rd Place), University of Southern Mississippi, USA.

(c) Geeks of the Square Table Team (2nd Place), University of Bremen,
Germany.

(d) Team Orion (1st Place), University of Texas at Arlington, USA.

Fig. 21. HRATC 2014 judge framework used to evaluate the performance of the competitors. Blue circles represent undetected mines, red circles represent mines that
exploded, green circles represent mines that were successfully detected, and purple circles represent false detections. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
(GUI), which should provide in real-time the status of all the hard-
ware and sensors within the robot. Furthermore, the arm localiza-
tion may accumulate error due to steps skipped by the stepper
motor, when the robot traverses rough terrains or rotates very
quickly. In extreme situations, these skipped steps may result in
the armstopping as a securitymeasure, due to surpassing the range
of rotation imposed by the limit switch. Similarly, in such situa-
tions the PTU suffers fromvibrations,which highly affects the read-
ings reported by the SICK LMS111 laser. We plan to replace the
main motor and test a more stable tilting unit in order to conduct
further tests. Also concerning themine clearance arm,we observed
that the Nanotec PD4-N60 motor is not always reliable, and may
crash during operation. As a direct consequence of this, the arm
often halts and will not react to further commands. When this sit-
uation occurs, it is necessary to reset the robot, since the power
supply is common for both sources. In the future, we plan to decou-
ple the armpower, by adding a power switch to reset it if necessary,
without affecting the remaining sensors.Moreover,we feel that the
testing stage before the finals was crucial, because there are a few
aspects that are slightly different between the simulation and the
real robot. More specifically, the localization system and the arm
control is not exactly mimicked in the simulation framework. The
testing stage allowed the participants to realize these differences
and adjust their strategies accordingly. Perhaps, an in-depth study
of the localization conditions and arm control on the real robotwill
allow amore correct parametrization of the simulation framework.

It is our belief that it is very important to promote humanitar-
ian causes by leveraging existing and emerging technologies for
the benefit of humanity and towards increasing the quality of life
in underserved, underdeveloped areas in collaboration with global
communities and organizations. Thus, following this philosophy,
humanitarian challenges such as the one mentioned can progres-
sively change the world by addressing the global emergency that
humanitarian demining represents. In this submission, we provide
an overview video of the 2014 edition of HRATC.8

6. Conclusion and future work

In this article we have presented the FSR Husky, an all ter-
rain demining platform developed in the framework of the EU FP7
TIRAMISU project. The implementation of our robotic system was
motivated by the need to increase safety in humanitarian demi-
ning missions, following at the same time three important design
goals: being affordable, lightweight and autonomous. The imple-
mentation, features, andmodular integration of the robotic system
were described, focusing especially on its steering base, hardware
and sensors, robot kinematics and constraints, energy consump-
tion, arm sweeping for mine coverage, software, and testing tools.
In addition, details on its current capabilities such as outdoor lo-
calization, navigation, environment perception andmine detection
were presented. Finally, outdoor field trials were carried out to
validate the robot functionalities and report continuous work in
progress on autonomous landmine detection. Several hours of field
runswith the robot allowed for a discussion of lessons learned dur-
ing the periods of test, and to plan future development.

As described along the article, several directions of research are
foreseen in the near future. We would like to further character-
ize our metal detection system by inspecting the influence of tar-
get content, sweeping speed, and distance from the target in the
probability of detection. We also plan to integrate a GPR with the
MD, and explore sensor fusionmethods to increase the reliability of
our mine detection system. Additionally, we would like to further

8 HRATC 2014 lookback: https://www.youtube.com/watch?v=13xPoXWACJo.

https://www.youtube.com/watch?v=13xPoXWACJo


142 D. Portugal et al. / Robotics and Autonomous Systems 70 (2015) 126–144
explore the stereo pair of cameras available in the robot to pro-
vide visual odometry estimates to our localization system, as well
as fusing the incoming data from the cameras with the laser point
clouds in order to generate anRGB-D3D reconstruction of the envi-
ronment. This will be useful to assess the traversability of outdoor
field scenarios, which in turn may represent an important compo-
nent for the robot’s navigation system, and will allow us to test the
robot in even more challenging conditions, e.g. with steep ramps,
diversified obstacles, and abrupt terrain. Even thoughwe have val-
idated the navigation and detection system in aminefield coverage
experiment, in order to have a full solution it is necessary that the
robot takes the mine position into account, integrate it as a virtual
obstacle during autonomous navigation, and replan its trajectory
in order to avoid the detonation of the mine [58]. Additionally, the
robot should have a marking mechanism to visibly identify mines
detected in the field. Finally, we plan to compare different cover-
age approaches in terms of the FSR Husky’s power consumption, in
order to extract energy-efficient strategies for minefield coverage.
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Appendix. Terminology

Acronym Description
AC Area Covered
AP Anti-Personnel
CARMEN Carnegie Mellon Robot Navigation Toolkit
CPU Central Processing Unit
CR Coverage Ratio
DC Direct Current
DEEC Department of Electrical Engineering and

Computers
DM Detected Mines
DOF Degrees of Freedom
DS Detection Score
DSP Digital Signal Processor
EDMS Elevated Device Mounting Structure
EKF Extended Kalmand Filter
EKM Exploded Known Mines
EOD Explosive Ordnance Disposal
EU European Union
EUM Exploded Unknown Mines
FNA Fast Neutron Analysis
FOV Field of View
FP7 7th Framework Programme for Research and

Technological Development
FPS Frames per Second
FSR Field and Service Robotics
GigE Gigabit Ethernet
GPR Ground Penetrating Radar
GPS Global Positioning System
GUI Graphical User Interface
HRATC 2014 Humanitarian Robotics and Automation

Technology Challenge 2014
HMI Human–Machine Interaction
ICR Instantaneous Center of Rotation
ICRA 2014 International Conference on Robotica and

Automation 2014
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial Measurement Unit
IP International Protection
Acronym Description
ISR Institute of Systems and Robotics
KF Kalman Filter
LIDAR Light Detection And Ranging
LOCOSTRA Low Cost Tractor for Humanitartian Demining
LRF Laser Range Finder
MD Metal Detector
MRS Multi-Robot Systems
NMEA National Marine Electronics Association
NQR Nuclear Quadropole Resonance
OpenCV Open Source Computer Vision
PEMEX Personal Mine Explorer
PPP Precise Point Positioning
PTU Pan and Tilt Unit
RAM Random Access Memory
RANSAC Random Sample Consensus
RAS-SIGHT Robotics and Automation Society—Special

Interest Group on Humanitarian Technology
RGB-D Red, Green, Blue, Depth
RMA Royal Military Academy
ROS Robot Operating System
RTK Real-Time Kinematic
SIFT Scale-Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SSD Solid-State Disk
SPU Single Processing Unit
TA Total Area
TOF Time of Flight
TIRAMISU Toolbox Implementation for Removal of

Anti-Personnel Mines, Submunitions and UXO
TM Total Number of Mines
TNA Thermal Neutron Analysis
TNT Trinitrotoluene
TS Time Score
TT Total Time
UAV Unmanned Aerial Vehicle
UC University of Coimbra
UCA Undetected mines in Covered Area
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicle
UUA Undetected mines in Uncovered Area
UNICEF United Nations Children’s Fund
USB Universal Serial Bus
UXO Unexploded Ordnance
WDM Wrongly Detected Mines
XEE Xsens Estimation Engine
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