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Abstract The exploration of unknown environments is a particularly and intuitively
detachable problem, allowing the division of robotic teams into smaller groups,
or even into individuals, which explore different areas in the environment. While
exploring, the team can discretely reassemble and build a joint representation of
the region. However, this approach gives rise to a new set of problems, such as
communication, synchronization and information fusion. This work presents mrgs,
an open source framework for Multi-Robot SLAM.We propose a solution that seeks
to provide any system capable of performing single-robot SLAM with the ability to
efficiently communicate with its teammates and to build a global representation of
the environment based on the information it exchanges with its peers. The solution
is validated through experiments conducted over real-world data and we analyze its
performance in terms of scalability and communication efficiency.

Keywords SLAM ·Multi-Robot · ROS · Open source software · Efficient
information sharing

1 Introduction

Mapping can be a dangerous task: it may require the mapper to spend long periods
of time in hazardous conditions, e.g. underwater, exposed to extreme temperatures,
radiation or other deadly environments. Unlike humans, robots can be designed to
resist harsh conditions, can be extremely precise in their measurements, can be made
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to be very small and, in dangerous situations, are less valuable than a human life;
robots are expendable and replaceable, whereas humans aremost certainly not. Thus,
robots appear to be a perfect choice for mapmakers.

The robotic mapping problem has been an active field of research for the last few
decades, and several appropriate approaches exist already. When mapping indoor
locations, in the absence of global references such as GPS (Global Positioning Sys-
tem), the mapping robot has no way of knowing where it is when it starts recording
data. This fact constitutes a chicken-and-egg problem: we need a map to locate our-
selves, and we need to locate ourselves in order to be able to create a map. These
operations must be performed simultaneously, a problem usually known as SLAM:
Simultaneous Localization And Mapping.

In the presence of a large, intricate environment, such as an abandoned factory,
or a cave, humans tend to break up into small groups to try and maximize the gain of
new information per unit of time on the structure and accessibility of this new envi-
ronment. Various groups can later meet, or rendezvous, communicate to each other
what they have learned from their experience and, together, create an approximate
representation of the location. This behavior is extremely beneficial to the group, and
is an efficient way of gathering information, as opposed to having a single person
exploring, or the entire group together. Intuitively, then, a team of robots could have
tremendous advantages over a single robot at mapping certain locations, particularly
vast ones. This also constitutes an open field of research, and this problem is usually
known as Multi-Robot SLAM. As with SLAM, this is a deeper challenge than meets
the eye. For example, unlike single robot SLAM, Multi-Robot SLAM requires that
the robots are able to communicate amongst themselves, so that they can coordinate
their exploratory efforts. While exchanging information, efficiency is the key to scal-
ability. In order to build a scalable multi-robot system, the agents need to be able to
communicate in an efficient way, so that the addition of new members to the team
does not cause failures in the network connecting them, i.e. that no information is
lost or corrupted in transit.

Given our knowledge of previous work, our prime objective is to develop a 2D
Multi-Robot SLAM approach. Our approach should be distributed, i.e. must not
depend on a centralized processing unit. In this sense, we will make use of preexist-
ing software tools to enable independent robots to communicate through a wireless
network. Our technique must also be robust to failures in communication, i.e. the
mission should not be compromised by the corruption or loss of a message, for
instance due to a link failure or robot withdrawal. Our approach should be scalable,
in the sense that adding robots to the mission should not compromise their perfor-
mance, within the limits of reason. This should be achieved both by making robots
communicate as efficiently as possible, and by carefully planning the execution of
our software. Finally, our approach should be SLAM-technique-agnostic, i.e. able
to work regardless of the SLAM technique employed. Hence, the main contribution
of this work is a 2D Multi-Robot SLAM framework for ROS, referred to as mrgs,
which provides an easy-to-use collection of packages, and an open source imple-
mentation that allows the inclusion, swapping and testing of different modules for
Multi-Robot SLAM.
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This chapter is organized as follows: we start by overviewing the state of the art
on Multi-Robot SLAM and Information sharing, in Sect. 2; in Sect. 3, we present
and describe the system developed in ROS for performing Multi-Robot SLAM, and
provide instruction to run the system on ROS, in Sect. 4. We then validate the system
experimentally in Sect. 5. Finally, in Sect. 6, we reflect upon the advantages and
handicaps of our system, as well as on the completion of our objectives and on
possible future work.

2 Background

2.1 Single Robot SLAM

SLAM stands for Simultaneous Localization and Mapping. Essentially, this means
that a robot performing SLAM is tasked with both creating a map of the environment
and localizing itself in it.

Using its sensors, which usually include range and odometric sensors, the robot
gathers data as it explores theworld. Since all data gathered through sensors is plagued
by noise and uncertainty, probabilistic solutions to the SLAM problem prevail over
mathematically simpler approaches [1]. Odometry, in particular, produces errors that
accumulate over time. In fact, with no assistance from other sensors, odometric errors
can grow arbitrarily large [2].

As data is received, the robotmust be able to relate it to the previous data it has been
gathering, i.e., the data must be aligned. This is usually known as the correspondence
problem, and solving it is usually accomplished by means of feature matching: the
robot extracts a number of features from every scan and tries to match them with
features extracted from previous scans. This process is of the utmost importance
during loop closure, which consists of the algorithm’s ability to recognize a loop
in the environment, i.e. to recognize the fact that the robot has already visited a
certain location, and to take that fact into account in its calculations. The inability to
recognize a loop in the environment may lead to an erroneous, unintelligible map.

Classical solutions to the SLAM problem include Filtering techniques based
on Bayes Filters [1], such as the Kalman Filter (KF), presented for the first time
in [3], which uses Gaussian distributions for the posterior probability distribution;
the Extended Kalman Filter, which is based on the linearization of the inherent non-
linearities of both the motion and the sensor models [1], and Particle Filters (PFs),
which are recursive Bayes Filters that estimate the posterior of poses conditioned by
gathered data representing it by a set of weighted samples, also known as particles,
instead of a function or a set of parameters [4].

Recently, Graph-based SLAM techniques became very popular [5]. Unlike filter-
ing techniques, in which data is discarded after being processed and incorporated into
the filter’s state, Graph-Based SLAM techniques save all gathered data, and a full
notion of uncertainty, in the form of a graph, keeping a complete history of past poses
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(a) Graphical representation of the
constraint network used by

Graph-SLAM. There can be various
links from each node, and multiple
links connecting any two nodes.

(b) Trajectories for all particles involved in
a RBPF SLAM approach [11].

Fig. 1 Graph-based SLAM and Particle Filter SLAM concept

(see Fig. 1a). Graph-based SLAMperforms a global optimization over all poses, thus
growth in computation power, and techniques such as variable elimination [6] are
key to allow the use of the technique in real time.

Graph Optimizers receive as input all the nodes and edges of the graph [7, 8], and
return the optimized poses as output. Implementations of graph optimizers include
the earlier TORO [7, 9]; SPA [10], an improved version of the algorithm originally
proposed by Lu and Milios; and g2o [8], an open-source C++ framework for general
graph optimization.

2.2 SLAM with Multiple Robots

Multi-Robot Systems (MRS) have a number of advantages over single-robot solu-
tions, such as parallelism, distribution in space and time, problem decomposition,
reliability, robustness and redundancy. Thus, they are very useful for monotonous,
repetitive, complex, dangerous, large-scale anddividable problems [12].Multi-Robot
SLAM is a natural extension to the original SLAM problem: if we are able to map
a 2D environment using a single mobile robot, why not apply this powerful concept
and use multiple robots, so as to achieve our goal in a faster, more reliable and robust
fashion?
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Despite their many advantages, the usage of multi-robot systems gives way to the
rise of multiple new problems. First and foremost, coordination is fundamental and,
thus, inter-robot communication becomes a capital factor in the team’s performance.
Furthermore, in regards to SLAM, one of the biggest challenges is that of combining
the information gathered by multiple robots.

2.2.1 Communicating Data

Communication is an essential part of cooperation, as robots have the need to share
information in order to perform their cooperative tasks. Robots can either commu-
nicate using an existing communication infrastructure, e.g. a WiFi network, or a
mobile, self-configuring, infrastructure-less dynamic network, namely Mobile Ad
Hoc Networks (MANETs).

Keeping track of which robot has which pieces of information can be a very
important step in reducing data traffic between robots. For instance, if two robotsmeet
a significant time after deployment, transferring the entire data they have gathered so
far would probably cause a considerable delay before they could resume their tasks.
However, if the robots can inform each other of how much data they need from each
other, and if they have met a few times before, the total amount of data they need
to transfer can be dramatically reduced. This issue is discussed in [13], where the
concept of rendezvous is used. Briefly, there is a successful rendezvous for time T if
all robots have all the relevant data up to time T. This is an important concept, not
only in cooperative robotic mapping, but in multi-robot systems in general.

2.2.2 Information Fusion

Information fusing is one of the greatest challenges related to Multi-Robot SLAM.
After a successful exchange of data, robots need to combine their local information
with the received one into a single, consistent representation of the environment.
There are various solutions to this problem. In this section, we review and discuss
some of them.

Map fusion, i.e. stitching together the various contributions into a combined rep-
resentation, can take place on one of two levels, either by merging data such as
poses, landmarks, graphs, etc. [14–17], or by merging the rendered occupancy grids
themselves [18].

In [14], map fusion is assisted by what is called rendezvous measurements. While
exploring, robots often pass by each other, going in the same or different direc-
tions. When this occurs, it is possible to measure the relative pose between them
using robot-to-robot methods, such as the visual detection system described in [19],
in which virtual landmarks mounted on the robots are detected by cameras also
mounted on the robots. These measurements are then used to estimate the rotation
and translation needed to transform one robot’s local coordinates into the other’s.
Once this is determined, merging local maps is a trivial matter of matching features
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present in both maps and building the combined map. This method suffers from
the need of precision measurements of relative poses, which is not always possible,
making this technique unfit for our particular case.

The method introduced in [15] approaches the problem in a different manner:
robots carry a camera, which creates a stream of images as the robot explores. From
these images, features can be extracted such that each location on the map can be
identified in an unambiguous way. Thus, each time a robot needs to merge two maps,
it can search for locations that exist in both maps, and thus extract translational
information that relates them. This technique, however, requires that model images
exist previously, taken in ideal conditions, which will be used by robots in location
matching.

Fox et al. proposed, in [16], a complete method for Graph-Based SLAM with
multiple robots, which merges maps on the graph-level. As robots explore the envi-
ronment, Graph-Based SLAM dictates that constraints be created between each pose
at which a range scan is taken. The authors introduce a new type of constraint, which
is derived by matching poses between various local maps. It is also important to note
that, unlike the classical graph-based approach, this technique uses a local repre-
sentation for pose relations. This way, pose relations are independent of the world
coordinate systemand, thus, invariantwith rigid transformations (such as rotation and
translation). This technique, in its proposed form, does not linearize the constraints,
which makes it impossible to solve the optimization problem through classical meth-
ods.However, the authors propose alternativemethodswhich, given a “close enough”
estimate, can reportedly solve relatively large problems in under a second. This tech-
nique is able to achieve remarkable precision, even surpassing manual methods of
measurement in this field.

In [18], an image-based method is proposed as the solution to the map alignment
and merging problem. This approach operates on occupancy grids, commonly pro-
duced by SLAM implementations. The Hough Transform is an established method
for detecting lines and other parametric-natured forms, such as circles or ellipses.
The algorithm detailed in [18] uses the Hough Spectrum, as described in [20] for use
in scan matching, to conduct its spectra-based determination of rotations. The output
of this method is a set of candidate transformations. Since multiple solutions are to
be expected, a metric named acceptance index is proposed to provide the solution
which better fits the available data.

2.2.3 Multi-Robot SLAM

In [21], one of the first attempts at a Multi-Robot SLAM system is described. This
technique is a generalization of the Rao-Blackwellized Particle Filter (RBPF) tech-
nique to the Multi-Robot SLAM problem. Although not clearly stated, this approach
assumes that only one instance of the filter is running at any given time, and that
data from all robots is processed in a centralized fashion. Initially, it is assumed that
initial poses are known, either by deploying all robots from the same place or by
externally monitoring the mapping process. The algorithm is, then, generalized for



mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing 51

the case where initial poses are unknown. This algorithm does not explicitly use a
map alignment/merging technique, rather merging data at the landmark and pose
level. This merging is executed when robots “bump into” each other, i.e. when they
find each other and measure their relative pose. This issue is discussed in [19], where
the mutual detection and relative pose estimation problems are further explored.

The authors of [22] describe an interesting technique, also based on Rao-
Blackwellized Particle Filters, which assumes each robot as an isolated entity, i.e.
unlike in [21], robots take the steps of performing SLAM in an isolated manner, and
occasionally and discretely exchange and merge information. As before, merging
occurs at the data level (as opposed to merging rendered maps), and relative poses
are found using pan-tilt cameras. When two robots rendezvous, they exchange all
data, transform it according to the measured relative pose, and integrate it into their
respective filters.

In [23], the authors present an approach to Multi-Robot Graph-Based SLAM.
This technique is based on condensed graphs and on a novel efficient communication
model. The authors assume that all communication is conducted peer to peer, robot
to robot. Local maps are transmitted under the form of a single range scan, the latest
acquired, and a set of up-to-date, adjusted poses. Robots perform this operation at
each step, i.e. at every new node. The transmission of up-to-date poses at each step
enables each robot to provide its peers with the best estimate it can generate of its
past poses. Additionally, by transmitting all range scans, one at a time, the authors
ensure that all communicating robots have knowledge of each other’s local maps,
and that communication is as reliable as possible. Map fusion is based on keeping, on
each robot, a list of candidate edges between the robot’s graph and each teammate’s
graph. These edges are found by employing a correlative scan matching technique,
which consists of matching scans originating from different robots, in a way similar
to the process mentioned in [16]. Each of these new edges suggest a transformation
between graphs. A RANSAC (RANdom SAmple Consensus) technique is used to
determine a consensus among these transformations. The edges that are considered
inliers by the RANSAC method are then communicated to the robot with which the
map is currently being aligned, which then replies with a series of nodes, a condensed
graph containing only the nodes affected by these edges. These new nodes are, then,
added to the first robot’s graph, resulting in a higher consistency of the map in the
overlapping area and in the knowledge of relative poses in that area, which allows
for the merging of the two maps.

Recently, cloud-based approaches have also become popular for scalable and
real-time Multi-Robot SLAM. In [24], the authors distribute the SLAM process to
multiple computing hosts in a cluster, which enables 3D map building in parallel.
They promote switchablemessaging patterns tomeet different transmission scenarios
and eliminate the bottleneck from data sharing. Another cloud-based strategy is
described in [25], where an efficient architecture is proposed to parallelize complex
steps inMulti-Robot SLAM, via cloud computing nodes to free the robots from all the
computational efforts. The system also decides between two alignmentmethods (data
association and inter-robot observations), which is more appropriate for computing
the coordinate transformation between the robot reference frames.
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In this work we propose a technique-agnostic multi-robot SLAM package, mrgs.
Our technique differs from other multi-robot SLAM packages by providing a frame-
work that does not depend on the underlying SLAM technique, thus outperforming
the state of the art in versatility. Unlike state-of-the-art techniques, mrgs relies on
image-based techniques [18] to fuse maps, thus being able to seamlessly operate
above single-robot techniques.

2.3 ROS: Robot Operating System

Algorithms and approaches must exist as compilable code so that they can be experi-
mentally validated. In order for an approach to be effortlessly and effectively testable
by the robotics community, a common software frameworkmust be established, with
the goal of reducing to a minimum the time it takes to prepare a solution to be tested.
ROS, standing for Robot Operating System [26], achieves just that. It is a software
framework that aims to ease the development of modular code targeting robots, and
a very widespread tool in the field of robotics.

ROS establishes a communication layer running on top of an ordinary host operat-
ing system,which allows for the exchange ofmessages betweenmultiple ROS nodes.
ROS nodes are programs which use the facilities provided by ROS to communicate
and perform their tasks. ROS nodes operate independently and concurrently, and
need not even be running on the same computer.

Communication is achieved through two main mechanisms: topics and services,
which both carry messages. Topics are a means of asynchronous communication:
a node publishes messages in a topic, to which other nodes may or may not have
subscribed.Once anodepublishes amessageon a topic, all nodes that have subscribed
to that topic receive that message. Services, on the other hand, provide synchronous
communication between two nodes, and require that both a request and a response
message be transmitted between the communicating nodes in order to be successful.

ROS nodes can be implementations of all kinds of functions: data management,
mathematical functions, or anything else that can be implemented in any of the
languages supported by ROS. Hardware drivers are a prime example of just how
powerful ROS’s modularity is: for a given robot, it is possible to develop ROS nodes
which subscribe to a set of standard topics to receive commands, and that implement
the low-level code needed to relay those commands to the robot. Thus, it is possible
to directly use code developed for other robots to, for example, implement a given
exploration algorithm on our robot. ROS allows us to abstract away the hardware
intricacies of many robots and to develop as if we were writing code that targeted
a standardized robot. ROS promotes code reutilization and has become a de facto
standard in Robotics.
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2.4 ROS Packages for SLAM

ROS software is distributed in packages, which generally contain code, messages
types and other support files. We can find several ROS packages that implement
SLAM algorithms.

SLAM packages in ROS usually deal with two kinds of data: range scans and
odometry. In other words, the ROS node in charge of the mapping process subscribes
to topics which are published by the node(s) in charge of relaying information from
the robot’s sensors. Given this data, the SLAM node then creates a map, usually in
occupancy grid form, and publishes it into a dedicated topic, thus transmitting it to any
subscribing nodes. The SLAM node is also responsible for determining the robot’s
position in the map it created, thus constituting a solution to the complete SLAM
problem.Popular SLAMpackages includeGMapping1 [27],Karto2 andHector3 [28],
which are compared in [29]; as well as the recent Cartographer graph-based SLAM
approach implemented by a Google research team4 [30].

The roscore,5 a collection of nodes and programs that are pre-requisites to any
ROS-based system, including theROSMaster, is a critical part of theROS framework,
and is responsible of handling the communication between nodes. Each ROS system
uses a single roscore to overview all operation, and it is of the utmost importance
that no node ever lose the ability to communicate with it. However, we envisage
a system in which robots are able to cooperate but also capable of working alone
if communication becomes impossible. We need, then, multiple ROS systems, one
for each robot, each with its own roscore, in order to have a scalable, fault-tolerant
system.

Communication between multiple roscores is not supported by ROS out-of-the-
box: ROS systems always assume the existence of a single core thatmanages all com-
munication between nodes. There is, however, interest in multimaster systems6 [31].

In the context of this work, a workaround based on the wifi_comm7 package is
used. This package propagates messages between various independent ROS sys-
tems, by mirroring a topic on a remote machine: any messages published to that
topic on the sending robot will be broadcast, under the same topic, on the receiving
robot(s). This allows for the exchange of arbitrary data between different ROS net-
works and, thus, the implementation of Multi-Robot SLAM systems in conditions in
which communication is not reliable: by isolating a ROS system in each robot, lack
of communication with the rest of the network does not implicate a lack of commu-
nication with the roscore. The wifi_comm package can be used with a multiplicity

1http://wiki.ros.org/gmapping.
2http://wiki.ros.org/karto.
3http://wiki.ros.org/hector_mapping.
4http://wiki.ros.org/cartographer.
5http://wiki.ros.org/roscore.
6http://wiki.ros.org/sig/Multimaster.
7http://wiki.ros.org/wifi_comm.

http://wiki.ros.org/gmapping
http://wiki.ros.org/karto
http://wiki.ros.org/hector_mapping
http://wiki.ros.org/cartographer
http://wiki.ros.org/roscore
http://wiki.ros.org/sig/Multimaster
http://wiki.ros.org/wifi_comm
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of routing algorithms. By default, it uses the Optimized Link State Routing (OLSR)
protocol [32].

2.5 Efficient Communication in Multi-Robot Systems

Cooperation among mobile robots usually involves the use of a wireless network.
Commonly, this network is taken for granted and little care is taken in minimizing
the amount of data that flows through it, namely to assist the robot’s exploration
through the environment.

However, in several specific scenarios, such as search and rescue operations,
constrained connectivity can become an issue, and caution must be taken to avoid
overloading the network. Additionally, in real-world applications, the exploration
effort can be but a small part of the tasks that must be dealt with by a complete
robotic system [33]. An efficient model of communication is also a key element of
a scalable implementation: as the number of robots sharing the network increases,
the amount of data that needs to be communicated does as well. Thus, greater care
in preparing data for transmission is needed, so as to avoid burdening the network
by transmitting redundant or unnecessary data.

Previous works, such as [23, 34, 35], have worked on a solution for efficient
inter-robot communication by creating new models of communication for robotic
teams, i.e. by developing new ways of representing the data needed to accomplish
themission. Other research efforts focused on developing information utilitymetrics,
e.g. by using information theory [36], which the robot can use to avoid transmitting
informationwith a utilitymeasure below a certain threshold. These techniques, while
successful in their intended purpose, rely on modifications to the inner workings of
their respective approaches. In our case, we intend to create a generalized optimiza-
tion solution, i.e. that does not depend on modifications to the intricacies of the
underlying techniques.

General-purpose data compression techniques, on the other hand, are able to deal
with any kind of data, with varying degree of success. Compression methods are
widely used in the transmission and storage of bulky data, such as large numbers of
small files, logs, sound and video, and their main objective is to represent data in as
few bytes as possible, regardless of its contents. These offer us the solution to our
problem: a way of achieving efficient communication without having to rework the
SLAM technique’s basic functionality, so that we can build our approach to be as
general as possible.

In our particular case, we intend to use a fast technique that efficiently utilizes
resources, as long as it demonstrates an acceptable compression ratio. In a previous
study, we have conducted a comparison of general-purpose FOSS compression tech-
niques for the optimization of inter-robot communication [37], and we concluded
that the best technique in terms of temporal efficiency is LZ4,8 making it very suitable

8Available at https://github.com/lz4/lz4.

https://github.com/lz4/lz4
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for real-time missions. Additionally, the compression ratio it achieves is appropriate
for our purposes; as it leads to a minimum of 10x reduction in necessary bandwidth
for map transmissions. Thus, we selected LZ4 as the most suitable technique for use
in our Multi-Robot SLAM approach.

In the next section, we describe in detail the proposed mrgs system for Multi-
Robot 2D SLAM.

3 mrgs: A ROS-Based Multi-Robot SLAM Solution

The Multi-Robot SLAM system implemented, mrgs,9 is completely modular and
its main functionality is divided into five components, distributed into four ROS
packages, forming the main contribution of our work, as summarized in Fig. 2.

The system can be run on top of any other ROS system that performs SLAM, as
long as it conforms to ROS’s standards, as illustrated in Fig. 3. In other words, this
system can quickly enable any system running SLAM to run Multi-Robot SLAM.

The underlying individual SLAM technique benefits from laser scan readings
acquired by robots, and possibly odometry estimation and/or other multimodal
sources to assist the robot’s local positioning (see for instance [29] for a list of

Fig. 2 An overview of our system’s design and data flow. This system is replicated in each of the
team members

9The mrgs framework is openly available at https://github.com/gondsm/mrgs.

https://github.com/gondsm/mrgs
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Fig. 3 A general overview of the complete system that runs on each robot. The focus of our work is
on the mrgs block, a ROS metapackage containing our framework for Multi-Robot SLAM. mrgs
enables robots to communicate with its peers and to build a global representation of the environment

popular SLAM techniques available in ROS), and provides as output an estimation
of the robot’s pose, as well as a local occupancy grid.

The local occupancy grids enter the system one by one via the Map Dam node.
This node crops out any excess empty space, attaches to the maps the local robot’s
local pose within the map, generated by the SLAM technique, under the form of a
transformation between reference frames, and sends the newly-received map to the
Data Interface node. These are then prepared to be sent to the team members,
first by being compressed and then by attaching to them the local robot’s MAC
address. Finally, they are sent into the network.

As maps are being sent, the Data Interface node is also receiving grids
sent from other robots, which are running the same process. These are all, both the
local and the foreign grids, packed into a vector and sent to the Complete-Map
Generation node. They are then iteratively fused into a single representation
of the environment at the Complete-Map Generation node, which stores the
fused occupancy grids into a tree-like data structure. The fusion itself takes place at
the Map Fusion node, which provides a service for fusing occupancy grids in pairs.

The system does not impose a limit to the team size, nor does it depend on
a priori knowledge of the team’s composition. Both the Data Interface and
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the Complete-Map Generation nodes are able to deal with any number of
teammates and maps, respectively.

This framework also includes a fifth, support package, whose purpose is to hold
various scripts and configuration files that, while an important part of the system in
the practical sense, are not vital to its operation, and are not the result of a signifi-
cant research effort; they are solutions for minor problems related to the solution’s
implementation.

3.1 Modes of Operation

While the system’s requirements only state that it should be able to operate in a
distributed fashion, this implementation supports a total of three modes of operation
by dividing the team members into three different classes: distributed robots, central
robots and mapping robots. All classes are able to collaborate with one another,
which makes this approach extremely flexible.

The distributed mode of operation initially required is achieved by populating the
team solely with robots running in the corresponding mode. These execute the full
framework, as they gather, propagate and fuse data. This is the most common use
case: we use a homogeneous team of robots to explore an unknown environment.

Mapping robots are the simplest of the three, they run a SLAM technique and use
theMapDamandData Interface nodes to propagate themaps they have build. Central
nodes, on the other hand, are assumed to be computationally powerful; they run the
full framework, except for the Map Dam node, do not produce their own maps, and
are solely tasked with building a global map based on information gathered by the
mapping robots. Combining these two classes of robots produces the centralized
mode of operation, which can be useful if the network we are using is reliable, fast
and widespread. In this case, the central node may even run on a base station, e.g. a
powerful desktop computer.

Finally, a third mode of operation can be achieved by combining the use of robots
running in distributed mode with robots running in mapping mode. This mode com-
bines the simplicity of the mapping robots with the versatility of the distributed ones,
so that all robots in the field produce their own local map. Optionally, this mode of
operation can employ central nodes, for added redundancy in the data fusion process.
All three modes of operation are illustrated in Fig. 4.

3.2 Design and Implementation Principles

This framework was designed and built with efficiency, scalability and maintain-
ability in mind. As such, all software strictly follows ROS’s C++ guidelines,10 and

10The guidelines are available at http://wiki.ros.org/CppStyleGuide.

http://wiki.ros.org/CppStyleGuide
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Fig. 4 An illustration of the three modes of operation supported. “D” nodes are distributed nodes,
“C” nodes are central nodes and “M” nodes are mapper nodes. The blue arrows represent the flow
of local maps

Software Engineering good practices. The system was purposefully segmented into
concurrently-executing modules so as to explore the flexibility of multimaster sys-
tems, as well as, for example, guaranteeing that the robot remains able to communi-
cate during the map fusion process. Additionally, having a well-segmented system,
i.e. not divided into too little or too many modules, maximizes the utility of the code
by making it reusable.

Aside from inter-robot communication, all inter-module communication relies
as much as possible solely on standard ROS data structures, in order to maximize
compatibility with other systems and code reusability. Even custom communication
structures, such as the messages exchanged between the Data Interface and
the Complete-Map Generation nodes, have their roots in ROS’s standard
data types, ensuring that reusing specific nodes from this system within other ROS
systems is a fairly straightforward process. All ROS topics used solely by our system
are packed into their own namespace, to enable the user to quickly identify which
topics belong to our system, as well as minimize possible interference with other
systems running on the machine. In our implementation, code reuse is restricted to
the usage of the reference implementation of Stefano Carpin’s mapmerge [18], all
remaining code is completely original.

3.3 Multi-Robot SLAM System Components

In this section, we provide details about the system components developed in
this work, namely the Data Interface, Map Fusion, Complete-Map
Generation and other auxiliary ROS nodes.
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Fig. 5 The Data Interface node publishes into and subscribes to a topic that is shared among all
robots. All information published into this topic is broadcast to all known robots in range in order
to propagate the latest local map and transformation information

3.3.1 The Data Interface Node

The Data Interface node for ROS, existing in its own package, is responsible
for dealing with one of the biggest challenges we have proposed to tackle: it is
responsible for communicating all the relevant data between robots, and for doing
so in an efficient manner. This node’s operation is summarized in Fig. 5.

In the proposed approach, we have decided not to rely on explicit rendezvous
events, since actively seeking a rendezvouswith another robot is a complex and costly
operation [13]. Instead, data is published into the shared topic, and received by all
robotswithin range. This approach greatly simplifies the transmission of information:
robots do not need to trade control messages, instead relying on the capabilities of
the multimaster communication approach of wifi_comm to deliver all data.

One of our goals related to communication was that it be relatively robust to
network failure. To partially solve this issue, this node uses MAC addresses to iden-
tify particular robots. MAC addresses are a better identification key than IP address,
since they are not repeatable, not only in the same network but across all networks of
physical devices; MAC addresses are tied to the hardware itself and are not subject
to change during the network device’s lifespan. This way, we guarantee that a robot
is always able to clearly and indubitably identify the sender of a given message,
regardless of the possible changes the sender’s IP may suffer due to network fail-
ures. Additionally, ROS’s transport layer protocol, TCPROS, makes use of TCP in
the transmission of messages. Thus, we expect that messages are either delivered
correctly or completely lost, since TCP applies error-checking measures that should
prevent any messages from getting corrupted. Furthermore, a lost message does not
compromise the mission; the system does not depend on a reliable connectivity with
its peers, instead processing data as it arrives. If the connection to one of the peers
is lost, the latest information it sent is used in the map fusion process. As such, the
system is expected to be robust to single node failure, as well as link failure.

Furthermore, this node is able to deal with a team of unknown size. Thanks to the
combination of OLSR, wifi_comm and the usage of MAC addresses as identifiers,
we are able to dynamically create a list of teammates that is able to grow as long



60 G. S. Martins et al.

as robots are added to the team. The usage of OLSR [32] further strengthens our
solution’s robustness to network failure. Being amesh networking routing algorithm,
it is designed to recover from failures in links between nodes, and also to be able to
establish new links between nodes as needed.

It is also required that communication be as efficient as possible. That goal is
achieved by employing the LZ4 compression algorithm to all occupancy grids meant
to travel through the network, following the results presented in [37].

The insertion of a new local map into the network is triggered by the insertion of
a new map into the system, which means that all new local maps that pass through
theMap Dam node are sent into the network. This methodology is meant to facilitate
the generation of an interpretable map as soon as possible, by quickly relaying new
information to all robotic agents. Furthermore,maps are transmitted regardless of any
measured link quality; we believe the usage of the LZ4 data compression technique
makes the maps small enough to go through low-quality links.

3.3.2 The Map Fusion Node

The Map Fusion node, also inhabiting its own package, is responsible for fusing
(i.e. aligning and merging) a pair of maps and for calculating the geometric trans-
formations between the original occupancy grids’ reference frames and the fused
reference frame.

This module features the reference implementation of the alignment algorithm
presented in [18] at its core. As referred in Sect. 2.2.2, this algorithm fuses occu-
pancy grids using an image processing method based on the Hough Spectrum to
determine the candidate transformation that better fits the existing occupancy data.
The aforementioned implementation is only capable of dealing with its own data
representations, and only able to determine the transformations of the maps, but not
to actually merge them. This node extends that implementation to be able to per-
form the remaining operations needed, while simultaneously wrapping it in ROS’s
standards, i.e. embedding it into a ROS node. This node also features a self-tuning
ability, i.e. it gauges the computer’s performance on startup, and adjust the amount
of CPU dedicated to the alignment effort accordingly.

Since there is always the possibility of building a better, more robust algorithm
for map fusion, special care has been taken to ensure that this node is as decoupled
from the rest of the system as possible, so as to ensure that it can be easily swapped
for another that communicates in the same way.

3.3.3 The Complete-Map Generation Node

This node is responsible for building a representation of the environment using all
the available information. It does so by controlling the Map Fusion node, which
only fuses grids two at a time. This node receives a vector of occupancy grids and
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Fig. 6 Illustration of the tree-like structure for storing and updating maps. At a given instant t, the
system receives a vector of maps, and iterativelymerges them until it obtains a single representation.
When a new map is received (green), only the maps that depend on it must be re-merged (orange).
Each pair of arrows represents a merging operation

iteratively builds a tree-like data structure for storing occupancy grids, as represented
in Fig. 6.

When a new occupancy grid is received, be it from the local or from a remote
robot, this node starts building a new representation of the environment, incorporating
into it the new information. Doing this in an incremental way, i.e. by attempting to
integrate the new map in the previously merged one, could lead to disastrous results:
once a merging step fails, which is likely at the beginning of the mission due to the
fact that little information is available, all future complete maps will include that
error.

The tree-like representation of map storage allows us to reuse this information
when new maps are received. When a new occupancy grid is received, we only re-
merge the intermediate grids that depend on the newly-received grid, thus avoiding
costly operation of completely rebuilding the final occupancy grid. This behavior is
illustrated in Fig. 6. This method allows us to recover from an erroneous merge in a
natural way: when new information is received, all grids that depend on it are rebuilt,
thus giving the algorithm the opportunity to correct its previous error.

This structure is initializedwith the first twomaps received from different sources,
i.e. the iterative map fusion process only starts when there are at least two different
maps available. The structure then grows laterally as new teammates join the mission
(or as their maps are received for the first time) to accommodate more information,
as illustrated in Fig. 7.

This node also keeps a similar structure for calculating the transformations
between the various occupancy grids, so that the relative poses between robots can
be determined. These are also updated as needed when new information arrives, and
are fed into the Remote Navigation node every time a new Complete-Map is
computed.

Note, however, that the fused map, also known as global map, is not shared
between the robots. It is only accessible to the robots that run the Complete-Map



62 G. S. Martins et al.

Fig. 7 When a new robot joins the mission, the tree-like structure is grown sideways to accom-
modate the new data. Iterative merging then proceeds as usual, regardless of whether the current
number of maps is even or odd

Generation Node, i.e. robots that have interest on the data. Sharing the global
map can easily be achieved by transmission of the map to other robots using the exact
same process of sharing the individual partial maps. Yet, this is out of the scope of
this work.

3.3.4 Auxiliary Nodes

A fourth package which contains two additional ROS nodes is included. While not
difficult to implement or intricate in their operation, they are vitally important for
the performance of the system.

The Map Dam node, as the name implies, intends to add control and intelligence
to the way occupancy grids flow through our system, as well as further decouple our
system’s functionality from the behavior of the SLAMapproach. This node intercepts
all the occupancy grids output by the SLAM technique, and introduces them into
our system. Before the introduction into the system, the grids are trimmed, i.e. any
excess free space is removed from the grid.

TheRemote Navigation nodewas designed to copewith the requirements of
the tf ROS package. tf is responsible for managing the geometrical transformations
between the various frames that compose the robot, and is an extremely useful and
widespread tool.However, it requires that the information it receives be very carefully
formatted and timed. It was also designed toworkwithin a single robot, which creates
a need to re-tag and re-format much of the information that is passed to it.

This last node receives transformation information from the Complete-Map
Generation node and from the Data Interface node, and periodically prop-
agates it into the tf topic, correctly tagged and formatted.
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4 Installation and Usage

4.1 Installation

The mrgs system is meant to be installed as any cutting-edge ROS package: by
cloning its repository into the current source space, installing its dependencies and
building the workspace. Thus, we assume that the user has a working installation of
ROS Melodic.11 Earlier distributions should also be compatible, provided they are
post-Fuerte, i.e. provided they use catkin and support the necessary dependencies.

Clone the package into your workspace by running:

git clone https : / / github .com/gondsm/mrgs

in your catkin source space (the src folder in your workspace).
The mrgs metapackage, included in the repository, lists all of the necessary

dependencies that must be fulfilled for the system to work. Thus, installing the
system’s dependencies should be achieved by simply running:

rosdep insta l l mrgs

which should be followed by ROS installing a number of packages through apt,
as necessary. Once that procedure ends, you’ll need to compile your workspace by
changing the directory into its root and running:

catkin_make

4.2 Running the System

The mrgs package contains the necessary launch files to run the system.12 As seen
in Sect. 3, the system can be run in two main modes: centralized mode, which runs
the full stack, and distributed mode, in which not all robots fuse information. These
modes are achieved by mixing and matching two kinds of nodes: the central nodes,
which receive information from all of the robots in the team and fuse it to obtain a
global map; and mapper nodes, which run only the bare minimum system necessary
to input information into the remainder of the team.

To run the system in centralized mode, only one robot in the team should run a
central node. To achieve this, this main robot should use the launch file:

roslaunch mrgs central_node . launch

11http://wiki.ros.org/melodic/Installation/Ubuntu.
12 It is important to note that, since mrgs is still under heavy development, it is possible that the
general operating guidelines for the system change over time. As such, this text includes the most
generic instructions necessary, with all detail being included in the project’s repository. In case of
conflict, the instructions on the repository should take precedence, as they will be significantly more
up to date.

http://wiki.ros.org/melodic/Installation/Ubuntu
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and, thus, run the full system. The remaining robots need to be launched using the
launch file:

roslaunch mrgs mapper_node. launch

Which will ensure that they do not run the relatively CPU-heavy map merging oper-
ations. To run the system in distributed mode, all robots should run as central nodes.
Thus, all robots will share and receive information from all other nodes, which results
in a highly redundant system, better suited to hazardous situations.

5 Experiments

5.1 Experimental Method

In order to evaluate and validate the performance of our system, experimental tests
were performed, both in simulated and real-world environments. Since mrgs is a
Multi-Robot SLAM solution, the most appropriate way of validating its performance
is using several robots in an appropriate environment. In order to test our system,
we have segmented the experimental process into two steps: the data-gathering step,
and the processing step. The data-gathering step consisted of collecting several runs
of data from a single location, emulating an exploration performed by a team. We
took advantage of ROS’s facilities for data recording,13 ensuring that this data would
later be played back as if it had just been acquired. This has enabled us to test the
system with real-world data from the very beginning, by replacing the first blocks
illustrated in Fig. 3 with a single ROS node tasked with playing back the recorded
data. We designate the tests with data-gathering via recording without the mrgs
system running in real time, as offline tests.

The processing step took place in a controlled environment. Unit tests were per-
formed on modules as they were constructed, and system tests were then run using
a mixture of virtual machines and real, physical computers, as illustrated in Fig. 8,
each acting as a robot. This has allowed us to, while using real-world data, repeatedly
test our system as it was improved.

This approach had the very significant advantage of providing a lifelike environ-
ment for testing the solution, down to the transmission of data through a network
interface, that was not only repeatable but also moderately easy to set up, thanks to
the ability of cloning and creating snapshots of virtual machines. The only significant
drawback of this approach is the large amount of resources needed for running these
virtual machines on a single host computer. However, this testing solution is lean
enough to be run using three simultaneous machines on a consumer-grade laptop
with only 8GB of RAM and a dual-core Intel i7-620M processor. Without the use of
virtualmachines, at least three computerswould be needed for each test, whichwould

13Namely the rosbag tool, described at http://wiki.ros.org/rosbag.

http://wiki.ros.org/rosbag
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Fig. 8 An illustration of the setup used to process data. Virtual machines and real computers can
be used as equals, in any combination, in a network routed by OLSR

have to be correctly configured and simultaneously operated, severely harming the
repeatability of the experiment.

With the purpose of illustrating the system’s performance, two main offline tests
took place: one in theMRLArena, illustrated in Fig. 9; and on ISR’s corridors, which
is illustrated in Fig. 10. For these experiments, two sets of data were gathered at the
MRL Arena, and three were gathered at the corridors of the Institute, simulating a
mission composed of two and three robots, respectively.

Tests with actual multiple robots also took place, in a setup similar to Fig. 9. These
online testswere used to determine if the results wewere obtaining in the offline setup
were correct, and to demonstrate the system’s ability to operate in real-time. These
tests also took place in theMRL arena and the corridors of the Institute, and achieved
results that are identical to those of the offline methodology. Thus, we discuss only
the results of the offline tests.

To furthermimic the real-world usage of the package, the communication between
the machines was compressed by the data_interface node.

5.1.1 Hardware

Real-world data was gathered using one or several Pioneer 3-DX mobile platforms,
shown in Fig. 10, running the software framework described in Fig. 3. These are
equipped with a Hokuyo URG-04LX-UG01 Laser Range Finder, and the Pioneer’s
build-in encoders were used for odometry. The platforms were teleoperated using a
Wiimote or a remote machine. For teleoperation and recording purposes, each plat-
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Fig. 9 A small experiment taking place in the MRL Arena. In this experiment, a Traxbot and a
Stingbot platforms were used. In this experiment, the centralized mode was used, to cope with the
low processing power of the smaller laptops

Fig. 10 An illustration of the Institute’s arrow-straight corridors, where experiments took place.
In this instance, the distributed mode can be used, since the Pioneer 3-DX is able to carry larger
laptops that are able to run the full system
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form had an Asus EEE 1005 mini-laptop mounted on it. The simulation and virtual
machine-related operations were performed on a more powerful Toshiba Qosmio
F60 laptop.

5.2 Results and Discussion

5.2.1 System Performance and Immunity to SLAM Technique
Variation

In order to test the system’s immunity to the variation of SLAM technique, i.e. its
ability to perform its functionality regardless of the SLAM technique used in themis-
sion, data was gathered in the MRLArena, which was then processed using the three
different SLAM techniques mentioned in Sect. 2.4: slam_gmapping, slam_karto and
hector_slam, using their default parameters, namely regarding the rate at which they
output maps, and their size. We have configured them all to use a resolution of
5cm/cell.

These three techniques, while equivalent in their results, have different opera-
tional requirements. For instance, Hector does not use odometric data. Their results
are also different, both in format and quality. GMapping tends to output maps that
have significant empty areas surrounding a region of interest, as does Hector; Karto
outputs maps that are very closely trimmed to the region of interest. Our system was
designed to deal with this issue by cropping all the input maps to include only the
region that has useful information. The Map Fusion node then applies padding
around the maps to guarantee that no information is lost during rotation.

Figures11, 12, 13 show the results of the MRL Arena experiment for each of the
SLAM techniques, which were run over the same recorded data. These results show
our system’s ability to handle and adapt to the SLAM technique in use, being able to
successfully attain a global representation of the environment. We can see that while
every SLAM technique builds a different slightly representation of the environment,

a) b) c)

Fig. 11 An example of the results obtained using GMapping in the MRL Arena. a and b are the
local maps of each of the robots, c is the result of the map fusion process
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a) b) c)

Fig. 12 An example of the results obtained using Karto in the MRL Arena. a and b are the local
maps of each of the robots, c is the result of the map fusion process

a) b) c)

Fig. 13 An example of the results obtained using Hector in the MRL Arena. a and b are the local
maps of each of the robots, c is the result of the map fusion process

our system is able to process the data regardless. It is also important to note that
the map fusion process fuses the second map into the first, which is why there is a
disparity in the orientation of the final representations.

The experiment that took place in the corridors involved a team of three robots.
In this scenario, the Map Fusion node was expected to be able to deal with maps
it had already fused before, as described and illustrated in Sect. 3.3.2. However, its
performance revealed room for improvement, as illustrated in Fig. 14.

An unsuccessful fusion step can be catastrophic to the remaining effort, utterly
invalidating the final result. This unsuccessful fusion can be attributed to several
factors, such as the fact that the corridors are almost featureless, which hinders the
efforts of both the SLAM technique and the map fusion process; the presence of
glass panes, visible in the lower part of the image, that interfere with the laser range
finder; disparities in the way different maps represent the same real-world area, and
other factors.
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a) b) c)

Fig. 14 An example of a failed three-way map fusion in the Institute’s corridors. a is one of the
robot’s local map, and b is the result of the fusion of two other local maps. We can see that, while
the maps were roughly rotated and translated correctly, there is a noticeable misalignment on one
of the maps

5.2.2 Communication Efficiency

Table1 displays the results obtained during the MRL Arena mission. N represents
the number of processed maps (output by the SLAM technique into our system),
R̄ is the average compression ratio achieved during the mission, Lt is the total size
of the maps received by our system (before compression, after cropping), Ls is the
total amount of data sent into the network by this robot and, Ds is the amount of
data we have saved, i.e. the difference between the total size of the maps and the
data actually transmitted, and, finally, Tp is the total time spent processing maps, in
milliseconds. Essentially, these show that the technique adopted to ensure efficiency
in communication, compression using the LZ4 technique, is a viable option.

As postulated in Sect. 2.5, using compression on occupancy grids yields important
data savings. In this case, using real occupancy grids, we have saved at least about 7/8
of all data meant to be sent, which equates to about 88% savings in data sent. These
savings come at a very reduced cost, as is visible on the last column of Table1. At the
most, we spent a total of about 15 milliseconds processing maps during a mission,
which given that during that mission we saved 11/12, or 91.6%, on transmitted data,
is a very positive result. It is important to note that these results are limited to
occupancy grids, as mentioned before; it is not expected that the sole usage of LZ4
yield such dramatic improvements in the efficiency of the communication. For our
use case, however, compression has been shown to be a very competent solution,
which we will look to extend in the future.

In general, results show that the performance of our Multi-Robot SLAM solution
is acceptable. The technique is able to successfully map an environment using the
information gathered by multiple robots, and does so employing a very efficient
communication method, and allowing smooth real-time operation of the system. A
video of the system running with three robots in the MRL Arena has been made
available.14

14https://drive.google.com/open?id=18jy5uftf5n-CqTDRJKNVOdtcd13BGPkw.

https://drive.google.com/open?id=18jy5uftf5n-CqTDRJKNVOdtcd13BGPkw
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Table 1 Network statistics for outgoing data obtained during in the MRL Arena and the ISR
corridors. These are respective to one of the robots in the mission; the results obtained by its
teammate are equivalent. All sizes are in bytes

N R̄ Lt Ls Ds Tp

(a) Results obtained during the MRL Arena mission

GMapping 21 8.78 169062 19253 149809 2.77

Karto 6 8.03 48357 6015 42342 0.82

Hector 75 8.61 606667 70472 536195 9.61

(b) Results obtained during the ISR corridors mission

GMapping 21 13.92 930050 66787 863263 7.68

Karto 6 12.06 209799 17402 192397 2.64

Hector 76 12.03 3198376 265883 2932493 14.99

N Number of Processed Maps
R̄ Average Compression Ratio
Lt Total Size of the Maps Received
Ls Total Amount of Data Sent into the Network by the Robot
Ds Amount of saved data
Tp Total map processing time (ms)

We do not assess the accuracy of the obtained maps in detail, as this heavily relies
on the specific modules used in the mrgs framework, especially the Map Fusion
node, which has been shown to have room for improvement. The interested reader
may refer to [38] for an accuracy analysis conductedby adifferent researchgroup, that
made use of our system. Instead, we have focused on demonstrating that the proposed
approach is able to correctly handle all the decoupled functionalities developed,
namely: collection, compression, transmission and merging of the individual robots’
maps, regardless of the underlying techniques used.

6 Conclusions and Future Work

In Sect. 1, we have defined a set of goals for this work. We shall now reflect upon
them and on our system’s performance.

First and foremost, we needed our system to be completely distributed. By design-
ing the Data Interface node to abstract away all the network-related details,
and the Complete-Map Generation node to be able to fuse an unknown num-
ber of maps, we were able to build a system that, by design, does not limit the number
of robots we can use; the bottleneck in our system’s performance is the machine it
is running on.

However, operating in a fully distributed way creates an overly redundant system,
where resources are wasted in calculating the same results on various machines.
While desirable in a high-risk scenario, a more modest solution was required for
situations in which the risk of losing a robot was not as high. To solve this issue, we
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have designed our system to support three different modes of operation, which allow
us to fully adapt to and exploit the risk-level of the situation.

Failures in communication were also taken into account, and to deal with themwe
make use of a combination of TCP with the usage of hardware-bound addresses for
robot identification so that a failure in the network does not compromise our ability
to correctly identify the team members.

Scalability was also an important topic of this work, and was assured in a twofold
way. Firstly, by employing compression in our communication, we have been able to
save approximately 90% in required bandwidth, which allows us to greatly enlarge
the team. Secondly, by designing the system so as to not depend on the number of
robots available a priori, i.e. by making it able to dynamically embrace new team
members, we have achieved a solution that does not have a theoretical limitation to
the team’s size.

The last requirement stated that the system should be able to deal with any 2D
SLAM technique that was integrated in ROS’s standards. To satisfy this requirement,
we have designed our system to depend on those same standards as much as possible,
and to retrieve information in a standardized way. This has allowed the use of the
framework by other researchers in the community (see for example [38]).

As for futurework, it would be useful to include a tool that graphically displays the
network’s status, the bandwidth used by each connection, the current gains obtained
by using compression, etc. A tool like this would greatly simplify the control of the
mission, and would make information available “at a glance”.

The Data Interface node is already efficient enough at transmitting data
for our purposes. However, it would be interesting to explore the concept of delta
encoding in an attempt to further increase its efficiency. Delta encoding is a broad
concept that essentially consists of having a backlog of previous messages, and
constructing the following message as a set of differences from on or more of the
previous. In this case, delta encoding could be applied in one of two levels: at the
map level, where each new map would be sent as a set of differences from the last;
or at the buffer level, by sending each compressed buffer as a set of differences from
the last. It would be interesting to test both hypotheses.

The Map Fusion node could also be improved. Being very well decoupled
from the rest of the system, it would be very interesting to see it replaced with a more
robust approach in the future, such as [39, 40], which could increase the success
of the mapping effort itself. We could also test merging maps for robots running
different individual 2D SLAM techniques, which would be possible, assuming that
the output maps of the different techniques follow the same standard data principles
and have the same map resolution.

The Complete-Map Generation node could also be improved to detect
and deal with failed fusion attempts, for instance by discarding the newest fusion
result and keeping the last successful one. Currently, a failed map fusion attempt has
catastrophic results for the mapping mission.

Moreover, this work does not address the issue of inter-robot interference, i.e.
the fact that the presence of a robot within another’s scanning range violates the
static world assumption, generating inconsistencies in the final map. It would be
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very interesting to look into the possibility of creating a way of filtering robots out
of each others’ laser scans without using additional sensors.

The current model of distributed operation is highly redundant: every single node
that is operating has to create its own complete-map. Even though this model was
decided upon to maximize the tolerance to failure, it can represent a large waste of
computational resources in scenarios where the network is trustworthy. An improve-
ment over the current system would be to create a new mode of operation, where it
would be capable of performing the processing of maps in a distributed fashion, in
a manner inspired by computer clusters (e.g. see [41]).

Robots would have to periodically sync, and trade maps as well as control mes-
sages to determine how the complete-map generation process would take place. Each
robot would be responsible for building a part of the map tree, effectively distributing
the computational load across the robotic network. For instance, for four robots, two
of themwould fuse two pairs of maps, and then send the fused maps to another robot,
who would fuse them to create a complete-map, which would then be propagated
across the network.

Finally, a major improvement would be to deal with any kind of data. As we know,
a representation of an environment is not limited to an occupancy grid. In this sense,
the system could be upgraded to transmit, store and organize raw data. In fact, the
only node that explicitly relies on occupancy grids is the Map Fusion node. If
every other node were converted to deal with arbitrary data, only the Map Fusion
node would have to be deeply rebuilt in order to cope with the change. For instance,
we could perform Multi-Robot SLAM based not on occupancy grids, but on pose
graphs, as described in Sect. 2.1 (see also [42]). Given the system’s architecture,
we could retain the communication’s efficiency, as well as the map tree method of
computing a global representation, simply by replacing occupancy grids in the data
structures with content-agnostic structures.

Acknowledgements We are sincerely thankful for the contributions on the free and open source
frameworks adopted in this work, particularly: Giorgio Grisetti for his work on RBPF SLAM, Brian
Gerkey andVincent Rabaud for porting andmaintainingGMapping forROS, StefanKohlbrecher for
the design and development ofHector Mapping for ROS, SRI International forKarto SLAM, and its
maintainers for ROS over the years (Bhaskara Marthi, Michael Ferguson, Luc Bettaieb and Russell
Toris), and to the overall ROS community. This work was supported by the Seguranças robóTicos
coOPerativos (STOP) research project (ref. CENTRO-01-0247-FEDER-017562), co-funded by the
“Agência Nacional de Inovação” within the Portugal2020 programme.

References

1. S. Thrun,Roboticmapping: a survey, inExploringArtificial Intelligence in theNewMillennium,
vol. 1(1–35) (2002), p. 1

2. U. Frese, A discussion of simultaneous localization and mapping. Auton. Robots 20(1), 25–42
(2006)

3. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1),
35–45 (1960)



mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing 73

4. S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for mobile robots.
Artif. Intell. 128(1–2), 99–141 (2001)

5. F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping. Auton.
Robots 4(4), 333–349 (1997)

6. S. Thrun,M.Montemerlo, The graphSLAMalgorithmwith applications to large-scalemapping
of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)

7. R.Kuemmerle,G.Grisetti,H. Strasdat,K.Konolige,W.Burgard,TORO-Tree-BasednetwORk
Optimizer (2008). http://www.openslam.org/toro.html

8. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard, g2o: a general framework
for graph optimization, in 2011 IEEE International Conference on Robotics and Automation
(IEEE, 2011), pp. 3607–3613. http://www.openslam.org/g2o.html

9. G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard, A tree parameterization for efficiently
computingmaximum likelihoodmapsusinggradient descent, inRobotics: Science andSystems,
vol. 3 (2007), p. 9

10. K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent, Efficient sparse
pose adjustment for 2D mapping, in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IEEE, 2010), pp. 22–29

11. G. Vallicrosa, P. Ridao, H-slam: Rao-blackwellized particle filter SLAM using Hilbert maps.
Sensors 18(5), 1386 (2018)

12. D. Portugal, R.P. Rocha, Scalable, fault-tolerant and distributed multi-robot patrol in real world
environments, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IEEE, 2013), pp. 4759–4764

13. M.Meghjani, G. Dudek, Multi-robot exploration and rendezvous on graphs, in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 5270–5276

14. L.A. Andersson, J. Nygards, On multi-robot map fusion by inter-robot observations, in 2009
12th International Conference on Information Fusion (IEEE, 2009), pp. 1712–1721

15. Z. Li, R. Chellali, Visual place recognition for multi-robots maps merging, in 2012 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, 2012), pp.
1–6

16. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed multirobot explo-
ration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)

17. R. Natarajan, M.A. Gennert, Efficient factor graph fusion for multi-robot mapping and beyond,
in 2018 21st International Conference on Information Fusion (FUSION) (IEEE, 2018), pp.
1137–1145

18. S. Carpin, Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–
316 (2008)

19. X.S. Zhou, S.I. Roumeliotis, Multi-robot SLAM with unknown initial correspondence: the
robot rendezvous case, in 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IEEE, 2006), pp. 1785–1792

20. A. Censi, L. Iocchi, G.Grisetti, Scanmatching in theHough domain, inProceedings of the 2005
IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 2739–2744

21. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int. J.
Robot. Res. 25(12), 1243–1256 (2006)

22. L. Carlone, M.K. Ng, J. Du, B. Bona, M. Indri, Rao-Blackwellized particle filters multi robot
SLAMwith unknown initial correspondences and limited communication, in 2010 IEEE Inter-
national Conference on Robotics and Automation (IEEE, 2010), pp. 243–249

23. M.T. Lazaro, L.M. Paz, P. Pinies, J.A. Castellanos, G. Grisetti, Multi-robot SLAM using con-
densed measurements, in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IEEE, 2013), pp. 1069–1076

24. P. Zhang, H. Wang, B. Ding, S. Shang, Cloud-based Framework for scalable and real-time
multi-robot SLAM, in 2018 IEEE International Conference on Web Services (ICWS) (IEEE,
2018), pp. 147–154

25. S.S. Ali, A. Hammad, A.S. Tag Eldien, Cloud-based map alignment strategies for multi-robot
FastSLAM 2.0. Int. J. Distrib. Sens. Netw. 15(3), 1550147719829329 (2019)

http://www.openslam.org/toro.html
http://www.openslam.org/g2o.html


74 G. S. Martins et al.

26. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an
open-source robot operating system, in ICRA Workshop on Open Source Software, vol. 3, No.
3.2 (2009), p. 5

27. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with Rao-
Blackwellized particle filters. IEEE Trans. Robot. 23(1), 34 (2007)

28. S. Kohlbrecher, O. Von Stryk, J. Meyer, U. Klingauf, A flexible and scalable SLAM system
with full 3D motion estimation, in 2011 IEEE International Symposium on Safety, Security,
and Rescue Robotics (IEEE, 2011), pp. 155–160

29. J.M. Santos, D. Portugal, R.P. Rocha, An evaluation of 2D SLAM techniques available in
robot operating system, in 2013 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). Linköping, Sweden, Oct 21–26, (IEEE, 2013), pp. 1–6

30. W. Hess, D. Kohler, H. Rapp, D. Andor, Real-time loop closure in 2D LIDAR SLAM, in
2016 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2016), pp.
1271–1278

31. A. Tiderko, F. Hoeller, T. Röhling, The ROS multimaster extension for simplified deployment
ofmulti-robot systems, inRobot Operating System (ROS) (Springer, Cham, 2016), pp. 629–650

32. A. Tonnesen, T. Lopatic, H. Gredler, B. Petrovitsch, A. Kaplan, S.O. Turke, OLSRD: An Ad
Hoc Wireless Mesh Routing Daemon (2008). http://www.olsr.org/

33. R.P. Rocha, D. Portugal, M. Couceiro, F. Araújo, P. Menezes, J. Lobo, The CHOPIN project:
cooperation between Human and rObotic teams in catastroPhic INcidents, in 2013 IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, 2013), pp. 1–4

34. J.C. Bermond, L. Gargano, S. Perennes, A.A. Rescigno, U. Vaccaro, Efficient collective com-
munication in optical networks, in International Colloquium on Automata, Languages, and
Programming (Springer, Berlin, Heidelberg, 1996), pp. 574–585

35. A. Cunningham, M. Paluri, F. Dellaert, DDF-SAM: fully distributed SLAM using constrained
factor graphs, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IEEE, 2010), pp. 3025–3030

36. R. Rocha, J. Dias, A. Carvalho, Cooperative multi-robot systems: a study of vision-based 3-D
mapping using information theory. Robot. Auton. Syst. 53(3–4), 282–311 (2005)

37. G.S. Martins, D. Portugal, R.P. Rocha, A comparison of general-purpose FOSS compression
techniques for efficient communication in cooperative multi-robot tasks, in 2014 11th Inter-
national Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2
(IEEE, 2014), pp. 136–147

38. M.A. Abdulgalil, M.M. Nasr, M.H. Elalfy, A. Khamis, F. Karray, Multi-robot SLAM: an
overview and quantitative evaluation of MRGS ROS framework for MR-SLAM, in Interna-
tional Conference on Robot Intelligence Technology and Applications (Springer, Cham, 2018),
pp. 165–183

39. N. Shaik, T. Liebig, C. Kirsch, H. Müller, Dynamic map update of non-static facility logistics
environment with a multi-robot system, in Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz) (Springer, Cham, 2017), pp. 249–261

40. J.G. Mangelson, D. Dominic, R.M. Eustice, R. Vasudevan, Pairwise consistent measurement
set maximization for robust multi-robot map merging, in 2018 IEEE International Conference
on Robotics and Automation (ICRA) (IEEE, 2018), pp. 2916–2923

41. D. Portugal, B.D. Gouveia, L. Marques, A distributed and multithreaded SLAM architecture
for robotic clusters and wireless sensor networks, in Cooperative Robots and Sensor Networks
2015 (Springer, Cham, 2015), pp. 121–141

42. I. Deutsch, M. Liu, R. Siegwart, A framework for multi-robot pose graph SLAM, in 2016
IEEE International Conference on Real-time Computing and Robotics (RCAR) (IEEE, 2016),
pp. 567–572

http://www.olsr.org/


mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing 75

Gonçalo S. Martins received the M.Sc. degree in Electrical and
Computer Engineering from the University of Coimbra (UC) in
2014, and a Ph.D. degree on Automation and Robotics also at
the University of Coimbra in 2019, focusing on user-adaptive
systems, machine learning and social robotics. Until recently, he
was a researcher at the Institute of Systems and Robotics, where
he worked on the H2020 GrowMeUp and Interreg EuroAGE
projects. He is now working as a Senior Researcher at Ingeniar-
ius, Ltd. His main research interests include Field and Service
Robotics, Artificial Perception and Multi-Robot systems.

David Portugal completed his Ph.D. degree on Robotics and
Multi-Agent Systems at the University of Coimbra in Portu-
gal, in March 2014. His main areas of expertise are cooper-
ative robotics, multi-agent systems, simultaneous localization
and mapping, field robotics, human-robot interaction, sensor
fusion, metaheuristics, and graph theory. After his Ph.D., he
spent 4 years outside academia, and he is currently work-
ing as an Assistant Researcher at the University of Coimbra
since 2019. He has been involved in several local and EU-
funded research projects in Robotics and Ambient Assisted Liv-
ing, such as CHOPIN, TIRAMISU, Social Robot, CogniWin,
GrowMeUp, STOP, CORE and SEMFIRE. He has co-authored
over 65 research articles included in international journals, con-
ferences and scientific books.

Rui P. Rocha is an Assistant Professor (tenure position) in the
Department of Electrical and Computer Engineering and a per-
manent researcher at the Institute of Systems and Robotics, both
at the University of Coimbra, Portugal. His research interests
include cooperative mobile robotics, cooperative perception,
multi-robot systems, human-robot team cooperation, distributed
control, ambient assisted living, social robots, and autonomous
robots. Rocha received a Ph.D. in electrical and computer engi-
neering from the University of Porto in May 2006. He has
been involved in several FP6 and FP7 European funded projects
developed in consortium for the past few years, and he is a
senior member of IEEE and of the IEEE RAS Technical Com-
mittee on Multi-Robot Systems.


