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INTRODUCTION

Robots are becoming a part of our everyday life in society. Besides the wide use in industry, nowadays 

robots have an important role in household, medical, space, and military applications. Recent research 

has shown signi�cant innovation in other �elds as well, such as social robotics, �eld robotics, and 

intelligent vehicles. The widespread use of robots in these markets has been brought forward due to 

recent advancements in control, arti�cial intelligence (AI), decision-making, robot learning, localization 

and mapping, motion planning, computer vision, sensors development, and other relevant areas [1].

Naturally, with the growing proliferation of robots in our society arises the concern of security. 

However, this is an often overlooked issue in robotic systems, as the focus is commonly placed in 

robot functionality and innovation. Unauthorized access to a robot, or a network used by robots, may 

seriously compromise the system, potentially leading to unacceptable consequences, such as putting 

in danger humans who share the environment with the robot(s) [2].

The potential bene�ts of robotics are clear and widely documented. However, they also introduce 

new security and privacy concerns. Robotic systems are built on top of traditional computing 

platforms, being connected to actuators, and other sensors and hardware, such as cameras. Thus, 

not only are robots vulnerable to the same cyberattacks as traditional computing systems as they 

become networked and connected to the Internet, but they also unveil a whole new set of security 

issues that can result in privacy concerns if hacked or, even worse, causing physical harm.

The mass adoption of robots is likely to increase the possibilities of attacks. This is particularly 

problematic in defense, medical and other critical �elds involving humans [2]. However, the consideration 

of security and privacy risks has clearly not been a priority for roboticists neither in academia nor in the 

industry. With the new risks introduced by networked robots, now is the ideal time to take a deep look 

at the current security practices before robots with serious �aws become ubiquitous [3].
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The European Commission (EC) has been following the legal and ethical issues raised by new 

technologies, and recently proposed a series of recommendations on civil law rules on robotics and 

AI [4]. In the interest of safety and privacy, the EC created a code of ethical conduct for researchers 

and developers of robotic technology. The code is voluntary, used to provide guidelines for those 

involved in the development and use of robotics and AI technology to comply with set standards. 

They also proposed the creation of a European agency for robotics and AI, whose primary purpose 

would be to supply public authorities with information regarding technical, ethical, and regulatory 

issues in these �elds.

Despite recent efforts, EC-funded R&D Robotic projects often overlook security and privacy 

issues. This is also a widespread practice in robotics research and even in available commercial 

robotic solutions (cf. section “Background”). Therefore, building secure robot applications in general 

purpose programming environments is imperative. This is one of the motivations of the ongoing 

STOP R&D project,* which aims at deploying a commercial security system of distributed and 

cooperative robots by 2020. In spite of the targeted ground-breaking real-world application, the 

team, comprising public and private entities, has been mitigating common mistakes made during 

the design of complex systems, such as multi-robot solutions [5].

Numerous different robotic frameworks have been developed in the last decades, whereas the 

Robot Operating System (ROS)† [6] is undoubtedly the most popular. Its series of features led the 

adoption of ROS around the world, being the closest one to become the standard middleware that the 

robotics community urgently needed. Thus, several robots from vendors and research institutes run 

ROS. The use of Internet-connected robots is still limited to research laboratories in the majority of 

cases, but their application in the future seems inevitable [7]. In this chapter, a deeper look is taken 

into the security issue in robotic applications using ROS. We overview and discuss several initiatives 

for securing ROS, and we provide general security measures to be implemented to avoid devastating 

privacy and security consequences, based on lessons learned in the STOP project.

In the next section, we overview seminal work on the effort to promote security and privacy in 

robotics, and in section “Security Concerns in ROS,” we identify known security issues in ROS. 

Afterwards, in section “Initiatives for Securing Robot Applications on ROS,” we present and discuss 

several recent initiatives that augment the security levels in ROS applications. Additionally, overall 

measurements and recommendations are described to protect data in robotic projects, and �nally, 

the chapter ends with conclusions and future work.

BACKGROUND

The discussion of robotic safety and security dates back to Asimov’s Three Laws of Robotics in 

1950 [8], which state that:

 1. A robot may not injure a human being or, through inaction, allow a human being to come 

to harm.

 2. A robot must obey the orders given by human beings except where such orders would 

con�ict with the �rst law;

 3. A robot must protect its own existence as long as such protection does not con�ict with the 

�rst or second laws.

However, with the progressive advancements in robotics, researchers have shown that these laws 

alone are not suf�cient to govern robot behavior [3].

The term Cryptobotics has been proposed by Morante et al. [2] as a unifying term for research 

and applications of computer and micro-controllers’ security measures in robotics. In their work, 

* http://stop.ingeniarius.pt
† http://www.ros.org/
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the authors highlight the need to implement encrypted communications and to analyze the impact 

of encryption in real-time performance, thus raising awareness for developers to determine whether 

it is viable to integrate these mechanisms depending on their speci�c use case. Finnicum and King 

[9] identify key factors for improving security and privacy in robotic applications, such as user 

identi�cation, correctly exposing the application privileges, and user control of their own privacy. 

Additionally, the authors propose a layered software architecture grounded on a security kernel 

for robotic applications. Moreover, Adi [10] focuses on security requirements for designing robot 

identi�cation technology, analogously to human societies, thus enabling secure transactions between 

robots with unique provable identities.

In Reference 11, a security enhancement to the Interoperable Telesurgery Protocol (ITP) is 

described. It addresses four key security aspects: communication, authentication, authorization, 

and security policy development and enforcement, based on published standards to meet the 

stringent requirements of telesurgical robotics. Despite ensuring privacy and information integrity 

on individual communication channels, the communication between a telesurgical master and slave 

requires a highly robust, redundant, and secure communication link. The authors refer that a protocol 

to meet these requirements still does not exist.

On the other hand, Yong et al. [12] identi�ed risks to families with children when using wirelessly 

controlled robot toys, and propose risk mitigation solutions to toy companies and consumers at 

different levels. These include: (i) VoIP protection strategies (parental control and anonymity); (ii) 

secure remote control connections (encryption and authentication); (iii) wireless connections (home 

network Wi-Fi security features); (iv) parental control strategies embedded in commercial robot 

toys; (v) camera protection strategies (sound effects, authentication); (vi) shared risk perspective 

(government and toy company liability, require legal obligations to protect the safety of consumers); 

(vii) general protection strategies (strong passwords, require wired connection for initial setup, avoid 

ad hoc mode, use updated �rmware, avoid default ports, etc.).

Security has also been a matter of concern in multi-agent networks. For instance, Caiti et al. 

[13] described a methodology for secure cooperation within a network of autonomous mobile 

underwater sensors connected through an acoustic communication network. The algorithm 

proposed is intrinsically robust: with loss of communication among the vehicles, the coverage 

performance, that is, the mission goal, is degraded but not lost. The proposed form of graceful 

degradation provides a reactive measure against Denial of Service (DoS). To ensure trustworthiness 

in the available information, a security suite based on the group communication paradigm has been 

designed, with the goal of minimizing the information exchange among the vehicles, and reducing 

the communication overhead introduced by security in terms of number and message size. The 

authors introduce two main data security services: Secure Dispatching Service (SDS) and the Key 

Management Service (KMS). SDS is responsible for protecting con�dentiality and authenticity of 

messages by encrypting and decrypting them, as well as generating and verifying proofs of their 

authenticity. KMS is responsible for revoking the current key and distributing a new one either 

periodically or upon a vehicle leaving.

Moreover, security challenges in swarm robotics have been identi�ed in Reference 14. These 

include: (i) resource constraints in storage, communication bandwidth, computational restrictions 

and, most importantly, energy, due to the small sizes of devices; (ii) physical capture and tampering of 

robots, which may in�uence the swarm behavior; (iii) challenging control of swarm approaches due 

to the lack of hierarchic points of control and inherent distributed decision making; (iv) employment 

of different types of explicit and implicit communication, which can be jammed, intercepted, or 

otherwise disturbed; (v) physical mobility, which has an impact on entity authentication and additional 

security issues, (vi) identity within the swarm to guarantee and con�rm data origin, legitimate 

communication, con�dentiality, integrity, and availability; (vii) cryptographic key management due 

to the dynamic and interactive nature of a swarm; (viii) intrusion detection due to the autonomous 

nature of robots and collective emergent behavior; (ix) managing learning by adaptation due to the 

introduction of changes by malicious entities, causing robots to adapt in an undesired way. These 
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challenges identi�ed by the authors, even though addressed within the context of swarm robotics, 

transfer to most distributed multi-agent networks. Therefore, addressing them early would prevent 

undesirable consequences for many applications of this type of technology.

Under a different context, [15] reports the numerous vulnerabilities that smart home appliance 

users are facing, showing how networking monitoring tools and regular distributed denial-of-service 

(DDoS) attack techniques can easily be used to attack the Internet of things (IoT) network for illicit 

purposes. A promising TOR*-based anonymous communication approach was implemented to help 

smart home appliance users protect their privacy and make the smart home appliance system more 

secure from cyber attacks. Results show that this is a suitable approach to solve recent security 

problems in TCP-based smart home appliances.

The literature also presents several works which identify vulnerabilities in robot architectures. 

Researchers from the University of Washington have demonstrated the ability to maliciously control 

a wide range of functions of a Raven II teleoperated robotic surgery system, completely ignoring 

or overriding command inputs from the surgeon. They also found out that the emergency stop 

mechanism can be abused to execute attacks [16]. In a similar study, an AR.Drone 2.0 quadcopter 

was hacked, exposing evident security vulnerabilities [17]. Several attack scenarios were drawn, 

demonstrating how a malicious attacker can gain full control of the quadcopter. Other studies 

have identi�ed additional commercially available platforms with critical cybersecurity issues [3,7]. 

Besides proposing several mitigation measures in their works, all authors conclude that most of these 

attacks could have easily been prevented by using well-established and readily available security 

mechanisms, including encryption and authentication.

All the above-presented challenges and vulnerabilities show that important security lessons and 

challenges for current and future robot owners are at stake, and they are a direct consequence of 

vendors prioritizing time-to-market and researchers prioritizing functionality and innovation over 

security implementation and testing. Value-sensitive design (VSD) methodologies [18], which take 

key human values into account, are an appropriate example of methods that vendors and researchers 

should consider during the design phases of robotics and networked systems.

It is noteworthy, however, that despite the generalized lack of focus on robot cybersecurity, 

BeamPro, a telepresence robot, is a notable exception [2]. BeamPro uses secure protocols, symmetric 

encryption, and data authentication. Nevertheless, despite the existence of ROS drivers for BeamPro, 

it is a proprietary technology, and its replicability is limited to other products marketed by the same 

company. In this chapter, the focus is on the de facto standard in robotics, ROS, with the intent to 

signi�cantly improve the ef�ciency and security in software development for robots, not only in 

research, but also for robotics start-ups or robot-related businesses within major companies.

SECURITY CONCERNS IN ROS

ROS is a very popular robotics middleware whose major goals are hardware abstraction, low-

level device control, implementation of commonly used functionalities, message-passing between 

processes, and package management [6]. ROS promotes code reuse with different hardware by 

providing a large amount of libraries available for the community, like laser-based SLAM [19], 3D 

point cloud-based object recognition [20], as well as tools for visualization, recording experiments, 

and much more. ROS is based on a publish-subscribe and message passing system which utilizes the 

extensible markup language remote procedure call (XML-RPC) protocol. This allows native clients 

from multiple platforms and languages to send and receive data in a peer-to-peer manner.

Despite the clear advantages of integrating robots in ROS, it lacks any security protection feature 

by default, which makes robots prone to malicious attacks. This is, in fact, one of the reasons for ROS 

being preferred in research and having not yet fully established itself in industry. In this section, we 

survey the known security issues with ROS.

* TOR stands for The Onion Router, a worldwide network of servers that enable people to browse the Internet anonymously.
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The communication between nodes in ROS uses clear text through TCP/IP and UDP/IP. ROS 

only checks the MD5 sum of the message structure to guarantee that the parties agree on the message 

layout. Unencrypted text has bene�ts in ease of use, debugging, and performance. However, this 

allows an unauthorized listener to easily intercept and interpret the form of the message, gather 

information and spoof fake messages into the system [21].

ROS modularity has been highly praised in the community. However, it also poses disadvantages, 

such as the exposure of TCP ports, which provide no authentication. The use of unsecured and 

unprotected TCP ports and the lack of authentication mechanisms may result in malicious talkers, 

which can �ddle with the system, the injection of messages (person-in-the-middle) and replacing 

existing talkers/listeners, thus directing external packets towards the ROS ports.

Furthermore, ROS has anonymous publish/subscribe semantics. Therefore, general nodes are 

not aware of who they are communicating with [2]. The system uses weak authorization schemes 

with no sender veri�cation, no checks for data integrity and authenticity, and no de�nition of access 

levels. Certain remote clients should not have access to the entire ROS system as this allows users 

to send direct commands to robots, which may bypass safety thresholds. Since ROS provides no 

con�ict resolution measurements, different nodes can concurrently inject velocity commands to a 

mobile base, control an actuator, a manipulator, and so on.

Regarding communication, ROS requires bidirectional networking between all computers. Thus, 

the �rewall settings of the nodes involved must be less strict, posing an additional security threat, 

and resulting in additional networking overhead (computational requirements and latency).

ROS also does not provide Quality of Service (QoS) aspects. Each node is responsible to manage 

its own communication, similar messages are not compacted, nor there is any effort to reduce 

network communication. Messages of the same type are potentially candidates for compression, as 

the high volume of communication hampers the development of time critical applications.

There are no studies concerning ROS performance with a high number of nodes. However, being 

centralized at the ROS master node, the ROS naming service leads to scalability problems [22], not 

being designed to handle a large volume of requests. This introduces a special bottleneck since the 

system cannot produce responses in a reasonable time, being exposed to DoS attacks. Also, due to the 

complete lack of security features, it is unclear whether any analysis has been conducted to look for other 

security vulnerabilities, such as buffer over�ows or remote code execution possibilities within ROS.

According to [23], the availability of ROS source code permits an adaptation to alter it to a 

multimaster approach, for example, as seen in Reference 24. With this modi�cation, ROS can 

support a greater number of devices and improve its usability in larger installations for intelligent 

environments, wireless sensor networks, and/or multi-robot systems. The limitation of every ROS 

master node to hold the complete namespace in its memory was identi�ed, and a system to apply 

rules to the namespaces and reducing the memory and bandwidth usage was introduced. Also, the 

author provided support for the IPv6 protocol in ROS,* and it was shown that the verbosity and 

complexity of the XML-RPC protocol used lays a heavy burden on distributed nodes in the network. 

Therefore, extending ROS to support commonly used data formats, such as JSON or Protocol Buffers 

paired with HTTP, could extend its reach.

When a ROS master node is launched, it opens a port for any network machine to attach to. In 

turn, these machines may then query the ROS master for critical tasks, such as setting up ROS TCP/

UDP connections with other ROS nodes, subscribing to any topic, killing any node in the network, 

and so on. Consequently, a mischievous entity on the same network as a robot running ROS will 

most likely have access to all of the robot’s data with many avenues of exploitation, such as sending 

commands, clogging network connections, accessing camera streams, and generally causing bad 

things to happen.

Recently, important research to overcome some of the security limitations of ROS has been 

reported. For instance, in Reference 25, the focus has been placed on authentication and authorization 

* http://wiki.ros.org/ros_comm6
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(AA) in ROS 1.x systems. Before transmitting and receiving data, system entities need to authenticate 

using a login and password pair, and an authorizer node checks the authentication data, the roles and 

rights associated with them. The AA node generates all the communication keys to guarantee that 

communication is always evaluated, whether it comes from a trusted source or not. In Reference 26, 

the author also analyses the vulnerabilities of ROS and the resulting threats that could be posed by 

attackers, and propose to standardize security logging formats, a pro�ling syntax for security policies, 

and providing new tools to introspect recorded security logs. In Reference 27, a runtime veri�cation 

framework for robotic applications on top of ROS has been proposed. It provides a way for continuous 

observation of all communication requests and messages by inserting a monitoring tool into the 

connection using the man-in-the-middle technique. It detects potentially unwanted messages, enforcing 

access control policies, such as only enabling certain ROS nodes to publish messages on a certain topic. 

Additionally, core software development of the ROS 2.0 framework has been started in 2015, and an 

alpha release for community testing has already been made available at the time of writing this chapter. 

Efforts have been dedicated to integrate DDS (data distribution service), a standard speci�cation for 

publish-subscribed communications in real-time and embedded systems, as a transport layer for ROS 

2.0. Complying with the DDS Security speci�cation ensures authentication, access control, and data 

cryptography. Moreover, ROS 2.0 is expected to provide additional security by supporting IPv6 out of 

the box, making host scanning and identi�cation more challenging for attackers.

INITIATIVES FOR SECURING ROBOT APPLICATIONS ON ROS

Robot cybersecurity and cybersafety need to be seriously addressed by the robotics community. The 

�eld of AI and robotics is expected to face similar security problems to those faced by the computer 

revolution with the boom of the Internet [2]. Besides the attacks already faced by computer systems 

nowadays, for example, DoS, eavesdropping, spoo�ng, tampering, privilege escalation, information 

disclosure, etc., robots add the physical interaction factor, which increases their susceptibility 

to attacks. Thus, unauthorized access to a robot may result in disastrous consequences, such as 

disabling it, causing it to perform incorrectly, damaging itself, damaging its surroundings, or even 

worse, injuring someone nearby.

Moreover, experiments have shown that it can be particularly challenging in robotics to distinguish 

a cyber-physical security exploit from an hardware or software bug [21]. Hence, the detection of 

mischievous hacks may not be straightforward, and exploits might even be disguised as simple bugs, 

while the system is actually under attack.

ROS is the leading middleware in this �eld of research, bene�ting from a huge community 

support, regular software releases, widespread use in academia and in some industry sectors, and 

reaching from small embedded devices up to large-scale service robots. However, in a ROS-based 

system, an attacker can easily create a node, query the Master about the system state, and send 

shutdown commands to kill any node, or publish adulterated messages on important topics, for 

example, erroneous sensor data. Moreover, nodes are uniquely identi�ed by their name, with newly 

created nodes replacing existing ones with the same name. Thus, an attacker can easily fake a node 

to publish bogus messages on important topics. For instance, a navigation node in a robot may be 

killed and replaced by a fake node that misdirects the robot.

Below, we overview �ve distinct initiatives proposed recently to secure ROS, and in the next 

section, we run experiments to attest and compare the performance of each approach, mainly 

focusing on the overhead of communication of these initiatives, when compared to non-secure ROS 

systems.

SROS

SROS, which stands for Securing ROS, has been proposed as an addition to the ROS API and 

ecosystem to support modern cryptography and security measures in an effort to address existing 
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vulnerabilities [28]. Although still highly experimental and under heavy development,* SROS 

supports “native Transport Layer Security (TLS) for all socket transport within ROS, the use of 

x.509 certi�cates permitting chains of trust, de�nable namespace globbing for ROS node restrictions 

and permitted roles, as well as convenient user-space tooling to auto generate node key pairs, audit 

ROS networks, and construct/train access control policies,” according to the authors.

In SROS, the use of TLS between two communicating applications fosters privacy, authenticated 

identity and data integrity. SROS provides a ROS-independent keyserver at startup to generate and 

distribute keys and certi�cates to ROS nodes. The keyserver simpli�es the use and development of 

SROS enabled systems for end users, being seamlessly integrated in SROS, generating and distributing 

Public Key Infrastructure (PKI) elements including: asymmetric keys, certi�cate authorities (CA), 

and signed certi�cates, and providing conservative default security con�gurations.

At the time of writing, SROS lacks support for the ROS C++ library (roscpp), enabling only nodes 

coded in Python (rospy). To run SROS, it was necessary to install it from source and make some 

initial con�gurations, namely sourcing the SROS setup, running the SROS training mode so that 

the necessary topics/services parameters could be learned during a bootstrap session, and changing 

some of the keyserver generated con�gurations.

ROS-AES-ENCRYPTION

A recent study [29] has shown that using ciphered communications in ROS provides minimal overhead 

of CPU performance and communication load for systems without hard real-time constraints. The 

work consisted in encrypting data transmitted between ROS processes using the 3DES algorithm, 

by adding a pair of ROS nodes for the encryption and decryption tasks, and without changing ROS 

message structures nor ROS standard functions to send the data. The authors coded the nodes in 

Python (rospy library) and evaluated the performance of the system both from the computing and 

the communication point of view.

Inspired by this, we have developed a very similar approach for evaluation, with two main 

differences in our design choice for performance reasons: the encryption/decryption nodes were 

coded in C++ (with roscpp) using the Crypto++ library, and we have used the Advanced Encryption 

Standard (AES) [30] cryptographic algorithm, which is known to be faster than 3DES. The AES 

algorithm is a symmetric block cipher, which converts data in plaintext to an unintelligible form, 

that is, ciphertext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 

bits to encrypt and decrypt data in blocks of 128 bits.

We provide an independent study using this ciphered strategy, which we designated as ROS-AES-

Encryption. Since ROS-AES-Encryption does not change the core packages of ROS, any queries to 

the ROS master will be satis�ed as we are running a standard ROS system. Therefore, encrypting 

only the communications is not a completely secure solution, as will be seen in Section “Results 

and Discussion.”

SRI’S SECURE ROS

Secure ROS has been developed by SRI International, and it provides alternative versions of core 

ROS packages that enable secure communication among ROS nodes [31]. The main goal of Secure 

ROS is to enable secure communication for regular users of ROS. To this end, the authors have 

integrated the IP extension to security (IPSec) inside ROS. IPSec is used in transport mode, thus 

encrypting and authenticating the payload of the exchanged messages. In addition, the transport and 

application layers are always secured by a hash, so they cannot be modi�ed in any way.

The user may specify authorized subscribers and publishers to topics, setters and getters to 

parameters, and providers (servers) and requesters (clients) of services in a con�guration �le for the 

* http://wiki.ros.org/sros
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ROS master at run time. Accordingly, Secure ROS will only allow authorized nodes to connect to 

speci�c topics, services and parameters listed in the con�guration �le speci�ed.

Considering the implementation, Secure ROS shares some similarities with SROS. However, 

the installation process is more expeditious, as there are debian builds available. Also, Secure ROS 

supports both rospy and roscpp, it can be easily set up, being simple and transparent to the common 

user, which only needs to provide the required con�guration �le with access rules to each ROS entity. 

A downside of Secure ROS is that it does not provide formal veri�cation means to guarantee that the 

desired properties conform to the speci�cations.

SECURE-ROS-TRANSPORT

Dieber et al. proposed a ROS security architecture to run at the application level [32]. Using a 

dedicated authentication server they have enabled secure communication between ROS nodes, 

resorting to cryptographic methods that ensure data con�dentiality and integrity, and avoiding some 

of the most serious security issues of ROS. However, the proposed security architecture was intended 

for use on top of ROS. Thus, some key vulnerabilities, which could not be solved at application 

level were still present, such as arbitrary subscription to data albeit its encryption, and susceptibility 

for DoS attacks via high publishing frequency of bogus data in topics. As a consequence, the 

authors proceeded with a modi�cation of the core ROS packages to enhance the security of ROS, as 

described in References 33 and 34. This led to a secure communication channel, denoted as secure-

ros-transport, enabling ROS nodes to communicate with authenticity and con�dentiality in a peer-

to-peer basis. The authors have used TLS for TCP and Datagram TLS (DTLS) for UDP to secure 

the communications between nodes and the ROS master, by adding an additional handshake step and 

performing �ne-grained authorization on a per-topic basis. This approach reduces the possibility of 

DoS attacks, and arbitrary subscription/publishing of messages in ROS topics. However, as pointed 

out by the authors, the ROS master itself is currently not secure, still transmitting information about 

nodes and topics to any entity that solicits it (rosnode list, rostopic list, etc.), and allowing a special 

XMLRPC call to externally kill any running node (rosnode kill <node>).

A source installation of secure-ros-transport was necessary, as the modi�cations have been 

integrated within ROS. For the user this means that there is no need to recompile nodes to bene�t from 

secure-ros-transport. It is also noteworthy that the authors did not focus on handling certi�cates, and 

they draw attention to the need for proper key management. Also, in the version that we had access 

to, the Botan Crypto library used (v1.11) was outdated. Although case study data was provided in 

References 33, mostly focused in the overhead introduced by securing the communication channel, 

this is further explored in Section “Results and Discussion” of this chapter.

ROSAUTH

Focusing essentially on cloud-based solutions, and dealing with the connection of non-native clients 

with ROS systems, such as ROS-enabled robots, a community effort named rosbridge has been gaining 

increased attention [35]. Driven by the need to consider the critical issue of security in these systems, in 

Reference 36 a rosbridge authentication mechanism has been proposed under the name rosauth, aiming 

to achieve secure authentication for remote, non-native clients in the widely used ROS middleware.

Rosauth utilizes web authentication tokens to verify remote clients via an arbitrary external user 

management system, which is integrated as part of the rosbridge protocol. Inspired by message 

authentication codes (MACs), messages are hashed with a prede�ned key and a known algorithm, 

allowing for message authentication. The server stores several keys, and if it receives a message, it 

compares the received hashed message with the result of the hash function. If it matches, the server 

will accept the message. Otherwise, it marks it as it came from an untrusted source, and drops it.

The SSL protocol is used to ensure con�dentiality, integrity, and authenticity of individual 

packets. By using certi�cates issued by trusted certi�cate authorities, SSL can ensure that external 
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clients know that each ROS system, including the external authenticator, is legitimate. The 

developed security token schema ensures that only clients which have been authenticated from 

some trusted external authentication source are allowed access to the ROS system. Despite solving 

the authentication issue, rosauth does not provide authorization levels. Thus, once authenticated, 

any remote client (as well as any native entity running ROS in the same network) can access the 

entire ROS system, for example, sending direct commands to robots without restrictions. Therefore, 

expanding the mechanism developed to encompass authorization levels is a future endeavor of the 

developers, whom have implemented rosauth.

RESULTS AND DISCUSSION

In this section, the security initiatives described in the previous section have been tested. An Intel 

i5-4590 (3.30 GHz) CPU, with 8 GB of RAM, and an Ubuntu Linux 16.04 64-bit Operating System 

running ROS Kinetic Kame has been prepared to run experiments. Results in this section focus 

on the communication performance of each initiative when transmitting data between a publisher 

and a subscriber node running in the same machine. This allows us to compare the delay in 

communications, the number of lost messages, the ability to keep up with intended publishing rates, 

the levels of access from unauthorized nodes inside the ROS network, and to generally assess the 

trade-off between security and �uidity of each approach.

In each of the results trial, we have de�ned two types of messages to be published and subscribed by 

two separate ROS nodes: (i) a “Hello World!” string with a header containing the publishing timestamp, 

a message sequence number and an optional frame_id string (which we set to “0”); (ii) a nav_msgs/

Occupancy grid map illustrated in Figure 20.1, which also includes useful header information. Table 

20.1 provides an overview of the experiments conducted. For each tested initiative, the string with 

header message, consisting of 27 bytes, was published 600,000 times at three different intended 

publishing rates (1, 10 and 30 kHz). The occupancy grid message, consisting of 343 kB of data, was 

published 150,000 times, also at three different intended publishing rates (250 Hz, 2.5 and 7.5 kHz).

Henceforth, we designate the “Hello World!” message, simply as string, and the occupancy grid 

message, as map. Below, we exemplify a string and a map message published during the experiments 

(Figure 20.2).

FIGURE 20.1 Occupancy grid map transmitted during the experiments (1187 × 296, with 0.05 m/cell 

resolution).

TABLE 20.1

Overview of the Tests Conducted for Each Initiative

Message Type Total # Messages @ Publishing Frequency

“Hello World!” String w/Header (27 Bytes) 600 k @ 1 kHz 600 k @ 10 kHz 600 k @ 30 kHz

Occupancy Grid Map (343 KBytes) 150 k @ 250 Hz 150 k @ 2.5 kHz 150 k @ 7.5 kHz



282 Artificial Intelligence Safety and Security

The publishing rates in the experiments were de�ned so as to allow an analysis at three different 

levels: moderate, fast, and almost unbearable rates, thus taking each initiative to the limit. Since ROS 

is not a real-time system, the intended publishing frequency is not guaranteed, and packet losses are 

expected, as well. In all experiments, we have de�ned a queue size of 1 for each publisher and each 

subscriber. The of�cial “insecure” release of ROS Kinetic Kame was also tested to allow comparison 

of delays imposed by distinct security initiatives.

Table 20.2 presents the overall results of the string experiments. As can be seen, most approaches 

have comparable performance with the of�cial ROS release for the transmission of small string 

messages, with the delay values staying very close to each other, despite the generally superior 

performance of ROS without any security layer. However, it can be noted that in SROS, the publisher 

was not able to keep up the intended 30 kHz rate, reaching a maximum of ∼21 kHz with a very high 

packet loss (59.72%).

Rosauth is clearly a special case, because the publishing entity is not a native ROS node, but a 

HTML5/Javascript web client instead. This client connects to ROS via rosbridge using websockets, 

providing a JSON message which is parsed on the ROS side, and then published in the ROS network. 

In the javascript publishing loop, the setInterval function imposes a 4 ms lower limit, which results 

in a maximum publishing frequency of 250 Hz, as seen in Table 20.2. For this reason, tests with 10 

and 30 kHz were skipped for rosauth, as the results would be similar to those presented with 1 kHz. 

Evidently, the above mechanism for transmitting messages from non-native clients into ROS has an 

impact on the publishing/subscribing delay.

The box plots in Figure 20.3 illustrate the delay in message delivery for each of the tested initiatives 

in the string experiment at 1 kHz. The average value along 600 k transmissions is represented by a 

black asterisk. The ends of the blue boxes and the horizontal red line in between, correspond to the 

�rst and third quartiles and the median delay values, respectively.

(b)

(a)

FIGURE 20.2 Fields and format of the ROS messages used in the experiments. (a) String message. (b) Map 

message.
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An analysis of the box plots con�rms the longer delays occurring in the rosauth tests, and similar 

delays that all other initiatives present in the transmission of smaller messages. Due to the large size 

of each dataset, some outliers (red crosses) are visible, specially above the upper extremes of each 

box plot, which shows that occasionally delays are higher than expected, possibly due to computation 

peaks or network latency.

On the other hand, Table 20.3 presents the overall results of the map experiments. Since we are 

now transmitting a large message of 343 kB, the results are signi�cantly different when compared to 

the string experiment. The tests with ROS and Secure ROS stand out from the remaining initiatives, 

being able to keep up with the intended publishing rates, and presenting low percentages of packet 

loss (<0.2%). This con�rms that Secure ROS is one of the most promising initiatives proposed to 

secure ROS without compromising transmission performance.

The ROS-AES-Encryption algorithm was only able to publish the map message at ∼186 Hz. 

Clearly, the encryption of large blocks of data imposes delays in the publishing rate. However, it is 

interesting that no packet was lost during the experiments with ROS-AES-Encryption, which implies 

that the encryption + publish step always took longer than the subscribe + decryption step. The 

average delay in delivery of messages for ROS-AES-Encryption is within the [5.5, 5.8] ms interval, 

which is 15–45 times higher than in a regular ROS transmission.

SROS and Secure-ROS-Transport presented very similar results. Both approaches reached their 

publishing limit at around 80–82 Hz, dropping several packets (∼48%–53%). Their average delay 

in the delivery of messages is within the [16.0, 16.3] ms interval, which is 44–129 times higher than 

in a regular ROS transmission. The fact that the tests of both initiatives were conducted with ROS 

nodes written with the rospy Python library (as opposed to C++ in ROS, Secure ROS and ROS-

AES-Encryption) may also have an impact in these results.

Similarly as before, rosauth presents the lowest publishing frequency of 1.6 Hz, and an extremely 

high average delay of 125 seconds (340–990 × 103 times higher than in a regular ROS transmission), 

which is the result of an approximately constant growing delay of message delivery along the 

TABLE 20.2

Results for the String Experiments. For Each Line, 600 k Strings of 27 Bytes Were 

Published and Subscribed (P/S)

Publishing 

Frequency (Hz)

Real Publishing 

Frequency (Hz)

Packet Loss 

(Absolute/%)

Average P/S 

Delay (ms)

Standard Dev. 

P/S Delay (ms)

Median P/S 

Delay (ms)

ROS (C++) 1,000 999.924 290 (0.048%) 0.141 0.044 0.144

10,000 9990.432 868 (0.145%) 0.023 0.016 0.020

30,000 29951.328 122659 (20.443%) 0.022 0.007 0.021

SROS (Python) 1,000 999.955 85 (0.014%) 0.131 0.047 0.117

10,000 9985.279 37068 (6.178%) 0.061 0.024 0.059

30,000 20898.611 358330 (59.721%) 0.079 0.098 0.083

ROS-AES-

Encryption (C++)

1,000 999.992 98 (0.016%) 0.150 0.038 0.157

10,000 9992.973 882 (0.147%) 0.025 0.012 0.023

30,000 29962.872 125337 (20.889%) 0.023 0.006 0.022

Secure ROS (C++) 1,000 999.998 54 (0.009%) 0.156 0.047 0.145

10,000 9996.984 518 (0.086%) 0.023 0.010 0.019

30,000 29929.231 156039 (26.006%) 0.022 0.012 0.021

Secure-ROS-

Transport (Python)

1,000 999.982 99 (0.016%) 0.167 0.028 0.179

10,000 9987.499 752 (0.125%) 0.105 1.236 0.054

30,000 29683.691 7890 (1.315%) 0.071 0.420 0.066

Rosauth (HTML5/

Javascript)

1,000 249.929 76 (0.013%) 1.024 2.589 1.006
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experiment, which starts with delays of ∼0.7 s and ends at ∼266.2 s. For the same reason as before, 

tests with 2.5 and 7.5 kHz were skipped for rosauth.

The box plots in Figure 20.4 illustrate the delay in message delivery for each of the tested 

initiatives in the map experiment at 250 Hz. Like before, the average value along 150 k transmissions 

is represented by a black asterisk. The delays of rosauth were plotted separately due to the distinct 

order of magnitude.

Besides rosauth, the average delay is a bit superior to the median for all other initiatives. This 

means that the delay values are positively skewed, that is, most values are below the average, and 

as a consequence, outliers are above the upper extremes of each box plot. The box plots con�rm the 

superior performance in message delays of Secure ROS, followed by ROS-AES-Encryption, and then 

SROS together with Secure-ROS-Transport.

Packet transmission delays, losses and upper publishing frequency limits are not the only relevant 

issues in the analysis of the security initiatives for ROS. We proceed with a qualitative analysis 

of the security aspects of each initiative, mainly checking the extent at which the access to data 

is prevented from unauthorized entities with access to the ROS network, where the messages are 

exchanged.

ROS provides several command-line utilities, which allow to anonymously retrieve the list of 

topics in use (rostopic list), the list of nodes in use (rosnode list), the list of services in use (rosservice 

list), the ability to kill a running node (rosnode kill <node>), the ability to display the messages being 
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FIGURE 20.3 Overview of the P/S delays for the String experiments at 1 kHz.
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exchanged in a topic (rostopic echo <topic>), and much more. Thus, we have run the aforementioned 

commands from within the ROS network and inspected the access levels granted by each different 

initiative.

Table 20.4 provides the data returned by each initiative on requests made inside the ROS network 

by unauthorized nodes. SROS proof to be the approach with higher security levels, not replying 

to any kind of query to the ROS master from unauthorized nodes. Secure ROS also presented 

adequate levels of security, not allowing access to list and view any messages in any ROS topic by 

unauthorized entities. Furthermore, it also does not allow to kill nodes. Surprisingly, for unknown 

reasons it is possible to list the nodes and services that are in use by ROS. It should also be noted that 

SROS provides access con�guration at node level, while Secure ROS provides access con�guration 

at machine level (IP address �ltering). Hence, any query ran, for example, by SSH, from within the 

machine running the secure transmission will return data for Secure ROS, but not for SROS.

Unlike SROS and Secure ROS, other initiatives do not secure the ROS master adequately, thus 

providing inadequate authorization levels. They all allow listing topics, nodes and services from 

within ROS, as well as killing nodes without authorization. However, when running a rostopic echo 

command, Secure-ROS-Transport does not provide access to the messages being exchanged, and 

the ROS-AES-Encryption will display unintelligible ciphered text.

As for rosauth, it assumes that the ROS network is trusted and only secures the connection 

between the non-native client and the ROS interface, which then just forwards the messages 

insecurely through ROS. So, for the sake of the present analysis on the ROS side, it operates just 

like any ROS network without security.

In general, considering all the initiatives tested, Secure ROS and SROS are currently the ones with 

the most potential for enhancing the security of ROS. Secure ROS provides impressive transmission 

performance with negligible overhead and satisfactorily prevents access to data from unauthorized 

entities. SROS is undoubtedly the most secure initiative tested, providing satisfactory performance 

on high-throughput transmissions. Nevertheless, considering that they are still under development, 

TABLE 20.3

Results for the Map Experiments. For Each Line, 150 k Maps of 343 KB Were Published 

and Subscribed

Publishing 

Frequency (Hz)

Real Publishing 

Frequency (Hz)

Packet Loss 

(Absolute/%)

Average P/S 

Delay (ms)

Standard Dev. 

P/S Delay (ms)

Median P/S 

Delay (ms)

ROS (C++) 250 250.0 0 (0.0%) 0.366 0.155 0.283

2500 2499.776 71 (0.047%) 0.171 0.065 0.151

7500 7496.412 235 (0.157%) 0.126 0.049 0.122

SROS (Python) 250 81.801 75818 (50.545%) 16.248 3.594 15.286

2500 81.316 74376 (49.584%) 16.293 3.593 15.342

7500 81.859 73354 (48.903%) 16.173 3.499 15.263

ROS-AES-

Encryption (C++)

250 186.923 0 (0.0%) 5.516 0.182 5.451

2500 186.112 0 (0.0%) 5.544 0.194 5.468

7500 178.870 0 (0.0%) 5.768 0.288 5.661

Secure ROS (C++) 250 250.0 1 (0.0006%) 0.351 0.143 0.277

2500 2499.634 72 (0.048%) 0.172 0.065 0.154

7500 7496.050 184 (0.123%) 0.126 0.041 0.122

Secure-ROS-

Transport (Python)

250 80.308 74855 (49.903%) 16.096 3.678 15.096

2500 79.938 78000 (52.0%) 16.286 3.899 15.090

7500 80.275 79547 (53.031%) 16.284 3.817 15.162

Rosauth (HTML5/

Javascript)

250 1.613 1 (0.0006%) 125048.519 88037.166 133328.971
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both have room for improvement, Secure ROS could prevent unauthorized access to list the nodes 

and services in use by ROS and allow authorization at node level, while SROS could support the 

ROS C++ roscpp library, and provide easier installation and deployment features.

Robot cybersecurity should be addressed at several different levels. In this work, we have focused 

on the security of the robot operating system (ROS). Besides ensuring the secure communication 

of ROS components, it is also important to secure other components of the overall robotic system. 

For instance, the network in which the robot(s) operate should be impenetrable, using WPA2+AES 

security, SSID hiding, MAC ID �ltering, static IP addressing, and any other widely documented 
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FIGURE 20.4 Overview of the P/S delays for the map experiments at 250 Hz. (a) Publishing-subscribing 

delay for each initiative in the map experiments with 250 Hz. (b) Publishing subscribing delay for Rosauth in 

the map experiment with 250 Hz.

TABLE 20.4

Data Returned by Each Initiative on Requests Made Inside the ROS Network

ROS SROS

ROS-AES-

Encryption

Secure-

ROS

Secure-ROS-

Transport Rosauth

rostopic list ✓ ✗ ✓ ✗ ✓ ✓

rosnode list ✓ ✗ ✓ ✓ ✓ ✓

rosservice list ✓ ✗ ✓ ✓ ✓ ✓

rosnode kill ✓ ✗ ✓ ✗ ✓ ✓

rostopic echo ✓ ✗ ✗ ✗ ✓



287On the Security of Robotic Applications Using ROS

security measures. All accesses from non-native ROS clients should use SSL/HTTPS secure 

connections and authentication to verify the client’s identity. The ROS network can be deployed 

under a VPN to maintain security and privacy over network communications. Firewall rules should 

be de�ned allowing traf�c only on speci�c non-default ports from speci�c IPs, root login through 

SSH should be disabled and strong user-level authentication passwords should be enforced, as well as 

encryption of data storage. Moreover, methods for careful protection and exchange of cryptographic 

keys, and for maintenance of certi�cates, mandatory digital signatures and access levels should be 

used, allowing for their secure storage [37].

CONCLUSION AND FUTURE WORK

Although it is not a simple task, to generally improve robot cybersecurity several recommendations 

are important from day one [7], such as: secure software development life cycles, encrypting robot 

communications, keeping software up to date, granting access only to authorized users, providing 

methods to restore a robot to a secure factory default state, implementing cybersecurity best practices, 

educating roboticists and executives for cybersecurity, providing ways for users to give feedback on 

possible vulnerabilities, and promoting security audits before production. To this end, it is essential 

to enforce early and preventive secure design principles for robotic applications.

The purpose of this chapter is to identify potential security and privacy risks in the widely used 

ROS, thus raising awareness toward robot cybersecurity and the need to mature the industry security 

principles to avoid consequent penetration of insecure robots into the market.

Beyond the in-depth analysis of the literature in robotics data security, several security �aws 

of the widely adopted ROS framework have been revealed, and an analysis of initiatives to secure 

robot applications in ROS has been presented. We have also provided general recommendations and 

security measures at different levels to guide the implementation and deployment of single and multi-

robot systems. In the future, we intend to develop a ROS-based commercially exploitable multi-robot 

system for surveillance of infrastructures encompassing key cybersecurity and privacy measures, as 

part of the ongoing STOP R&D Project.
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