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Abstract. We present a universal visual navigation method which
allows a vehicle to autonomously repeat paths previously taught by
a human operator. The method is computationally efficient and does
not require camera calibration. It can learn and autonomously traverse
arbitrarily shaped paths and is robust to appearance changes induced
by varying outdoor illumination and naturally-occurring environment
changes. The method does not perform explicit position estimation in
the 2d/3d space, but it relies on a novel mathematical theorem, which
allows fusing exteroceptive and interoceptive sensory data in a way that
ensures navigation accuracy and reliability. The experiments performed
indicate that the proposed navigation method can accurately guide dif-
ferent autonomous vehicles along the desired path. The presented system,
which was already deployed in patrolling scenarios, is provided as open
source at www.github.com/gestom/stroll bearnav.

1 Introduction

Considerable progress in sensor development, machine perception and scene
understanding along with increasing computational power of embedded devices
had a significant impact on the development of unmanned vehicles. Autonomous
cars, which are able to navigate in structured environments of highways and
roads and react appropriately to standard traffic situations, are already on the
market. While these cars are using active sensors like radars and lidars for obsta-
cle detection and avoidance, their ability to understand the environment is based
on their capability to accurately interpret imagery from their on-board cameras.
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Thus, computer vision methods constitute the core of the autonomous naviga-
tion systems of these vehicles. One of the main advantages of the cameras is their
small size and consumption, which makes them ideal for deployment on small
robots with limited payload. Many of these robots cannot carry expensive and
bulky sensors like 3d or 2d lidars, and they have to rely solely on vision systems.

The paper [11] divides the vision systems for mobile robotics into map-
less, map-based and map-building based. Map-less systems recognise traversable
structures in the environment (such as roads or highway lanes) and use this
information to calculate motion commands for autonomous vehicles [10]. These
systems have reached a considerable maturity, and they have already demon-
strated their ability to be deployed in real cars quite some time ago [36,37].
However, not all environments have a clear, easy-to-recognise structure such
as roads and highways, which clearly define the directions for driving. To be
able to navigate to desired locations in environments without a straightforward
structure, robots use environment representations (maps) which, with the help
of on-board sensors, allow them to estimate their positions. According to [11],
navigation systems which require that these maps are provided apriori are called
“map-based” systems. An example of such system is a method that uses a CAD-
like model of a building to allow navigation in indoor environment [19]. Since an
accurate model of the operational environment is often not available, Behnzadian
et al. [3] propose a localisation scheme, which can deal with coarse, hand drawn
maps. Another way to deal with the lack of prior maps is to endow the robots
with an ability to build these maps themselves – these systems are referred to as
“map-building” ones. Some of these systems employ methods commonly called
visual SLAM (Simultaneous Localisation and Mapping) [12,18,29], which are
able to build maps and localise the robots at the same time. The maps built by
these systems represent the space in a metric way, and they can be passed to the
localisation and planning submodules of the mobile robots, which then attain
the ability to move across all of the mapped space. Another class of map-building
methods do not represent the mapped space metrically or in a globally consis-
tent way. These systems typically cannot move across all of the mapped space,
but are constrained to the vicinity of the path they have been taught during the
mapping. While somewhat limited in versatility, these techniques (called ‘map-
and-replay’) have demonstrated their ability to support long-term operation of
mobile robots [8,24,31,35]. Furthermore, they do not require skilled personnel
to be set up – one has to simply guide a robot along a desired path by means of
teleoperation.

Several researchers have proposed different schemes of visual teach-and-
replay navigation [5,7,28,33,34]. Some of the systems build metric, local maps,
which do not have to be globally consistent. For example [14] proposed to use
traditional SLAM techniques to build a series of overlapping local maps and
switch between them on-the fly. Similarly [33] build a map off-line from the
camera feed gathered during a human-guided drive and use it later on for local-
isation. Other methods use even simpler schemes for teach-and-replay, which
rely more on visual servoing rather than metric maps, e.g. [5,28] create a visual
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memory path by simply storing the images the robot has encountered during
a teleoperated drive. Similarly, [34] represents the taught path as a sequence
of locations, associated with a set of salient visual features. To move between
these locations, a robot can use a relatively simple feature association and visual
servoing. Another, even simpler method is proposed by [7], who extract salient
features from the onboard camera and associate these with different segments
of the taught path. When navigating a given segment autonomously, their robot
moves forward and steers according to the relative positions of the currently
recognised and already mapped features. A segment end is detected by means of
comparing its last mapped image with the current view. The paper [35] mathe-
matically and experimentally proves that a robot navigating along a previously
recorded polygonal route does not need a globally consistent map or explicit
position estimation. Later work, described in [22], extends the mathematical
proof provided in [35], which allows deployment of the navigation to a wider
class of mobile robots.

Many of the teach-and-repeat systems are reported to be robust enough to
deal with realistic outdoor conditions and environment changes, which makes
them suitable for long-term deployment of autonomous robots. The robustness
of these systems to environment variations is often improved by their ability to
adapt to the environment changes during the course of robot deployment, i.e.
when the robot repeatedly traverses the desired route. For example, [17,21] pro-
pose to use trainable image feature descriptors and [15,31] employ the dynamic
maps [4,8,9] to adapt the environment models and perception methods to the
nature of the changes observed. A paper by Halodová et al. demonstrates that
the employment of adaptive methods throughout the visual teach-and-repeat
navigation pipeline [16] significantly improves the accuracy and robustness of
mobile robot navigation.

Inspired by the robustness of the systems described in [14,31] and the simplic-
ity of the method proposed in [35], we implemented a versatile visual navigation
system with provable navigation stability. The main advantage of the system is
that it does not require precisely calibrated, high-resolution cameras or accurate
odometry, but it works with off-the shelf equipment. This not only makes the sys-
tem low-cost, but it also significantly reduces the time required for its integration
into a given robotic platform. Furthermore, given certain conditions (described
in [22,35]) the system ensures that the navigated vehicles do not deviate from
the taught trajectory even in low-visibility conditions. However, the system is
based on a theoretical model [22], which is quite coarse and it neglects the type
of the robot kinematics. The simplicity of the model and proof presented in [22]
causes doubts regarding the system’s ability to be deployed to various classes of
autonomous vehicles in diverse environments and the soundness of the aforemen-
tioned proof. Moreover, the experiments presented in [22] were constrained in
both environment size and number of platforms and the experimental evidence
provided in [22] was not compelling for audience familiar with field robotics.

Thus, in this paper, we deploy the visual navigation system proposed in [22]
to six different mobile vehicles with different type of kinematics and perform



A Versatile Visual Navigation System for Autonomous Vehicles 93

experiments evaluating the correctness of the mathematical proof presented
in [22]. We do not focus on the theoretical model and mathematical proof and
aim to provide an engineer’s perspective of the system described. Apart from the
experimental evaluation of the system navigation accuracy, we provide details
regarding the time required to deploy the system on various platforms. We hope
that the experiments, which demonstrate that the visual navigation can guide
toy-like robots as well as military UGVs, will be convincing enough, so that the
validity of the proof presented in [22] will be accepted with more confidence.

2 Navigation Method Description

As mentioned before, the method presented here combines two separate phases:
teach and replay (or repeat). During the teach phase, a human operator manu-
ally drives the robot through the environment along the desired path. After that,
the robot is able to repeat the taught path. To achieve the ability to repeat the
path autonomously, the robot creates a map by processing its on-board camera
image and storing the image features it saw along the path. Furthermore, the
robot stores the commands issued by the operator during the teaching phase.
Thus, the only inputs the system requires for both teach and replay are odome-
try and monocular camera image. The system can dynamically change between
different feature extraction algorithms depending on the computational power
available. A typical choice is the upright-SURF (Upright Speeded Up Robust
Features) [2], Binary Robust Independent Features (BRIEF) [6] or Adaptive
and Generic Accelerated Segment Test (AGAST) [26].

2.1 Environment Representation

The way the navigation system represents the environment determines its func-
tion, accuracy and robustness. In our case, the environment is represented from
a robot-centric way as a linear topological structure, where the taught path is
represented as a set of discrete, local maps that contain the images captured by
the robot’s on-board camera along with the extracted features. Each local map is
associated with the distance from the path start and with the commands issued
by the robot operator during the teaching phase. The Fig. 1 shows an example
of the environment representation: let us have a robot was driven through the
environment along the blue line, while using odometry to measure the distance
it travelled so far. Each time the robot operator issues a new command (i.e. he
changes the forward or angular velocity), the robot stores this command along
with the currently travelled distance. Moreover, at the beginning of the teaching
and each time the distance exceeds a certain interval (typically 0.1–0.5 m) from
the last local map, the robot saves the current image and its features into a
separate local map. These local maps are represented as red dots in the Fig. 1.

2.2 Image Processing

The purpose of the feature extraction is to detect image components, which
will help to re-identify a location when the robot captures an image of the
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Fig. 1. The taught path is represented by odometric information (blue) and a series
of local maps (red dots). The maps contain captured images and their features. (Color
figure online)

same location next time. Extraction of image features is a crucial component
of the navigation, because it determines what kind of information about the
environment is stored in the local maps and what information is then used to
steer the robot. Extracting the image features from the camera works in two
steps, keypoint detection and feature description. The keypoint detector locates
areas (or points) in the image, which are easy to recognise even if the given scene
will be viewed from another viewpoint. Typically, the keypoints are high-contrast
corners or blobs, which are localised by means of Hessian matrix analysis (in the
case of SURF features [2]) or by a direct comparison of a pixel’s brightness value
with its neighbourhood [26]. The feature descriptor characterises the detected
keypoint surroundings. In the case of the SURF algorithm [2], the 64-floating
number descriptive vector comprises of intensity gradients around the detected
keypoint. The BRIEF descriptor [6] is a 256-bit long binary string calculated by
comparing the intensities of 256 pixel pairs around the keypoint. One of the main
challenges of outdoor operation is unstable illumination which strongly influences
both the detection and description phases of image processing. In order to cope
with the illumination changes, our image acquisition and processing modules
are actively adapting their parameters (such as camera exposure and Hessian
threshold) to achieve high-contrast images and to extract the desired number of
image features [16].

2.3 Teaching the Path

During the teaching phase, the robot is driven by means of a joystick or other
device along a path, which it is supposed to autonomously traverse later on.
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When the teaching starts, the robot sets its distance counter to zero and saves
the current image and its features into a local map, which is indexed by dis-
tance of zero. As soon as the operator sets the forward or angular velocity, the
robot associates these with the zero distance as well, saves the command to the
map and starts to move while measuring the travelled distance by odometry.
Whenever the operator issues new angular or forward velocity, the robot saves
these to the map along with the current distance information. The robot also
measures the distance travelled since the last local map recording and whenever
this distance exceeds a certain threshold, the robot creates a new local map,
associates it with the distance travelled since the teaching started and fills it
with the last captured image and its features. When the operator indicates that
the teaching phase is over, the robot saves the stop command with the current
distance, creates the last local map and provides the operator with basic statis-
tics of the maps created. At the end of the teaching phase, the map should have
a similar structure as the one shown in Fig. 1.

The resulting map is neither metrically accurate, nor globally consistent,
because for self-localisation, the robot is using only odometry which is subject
to drift. However, this map creation process does not aim to create metric,
globally-consistent environment representation, because that is not necessary to
achieve autonomous operation [14]. Rather, the mapping aims to capture only
the information necessary for subsequent autonomous traversals.

2.4 Autonomous Navigation

As soon as the teaching phase is over, the operator can initiate the replay phase,
where the robot navigates autonomously. The operator indicates which map to
load and places the robot close to the intended path start. The method loads
all the saved local maps with image features and operator commands – both
commands and maps are indexed by their distance from the path start. Then,
it loads the commands and local map stored at zero distance. It applies the
commands, and as it moves forwards, it eventually reaches a distance where new
commands were issued during teaching, and applies them further. Essentially,
the robot replays the commands from the teaching phase.

However, if it would only replay these commands, its trajectory would not be
the same as during teaching for several reasons. Firstly the initial angle, where
the robot starts cannot be exactly identical to the one during teaching and even
slightly different angle would cause the robot to diverge from the desired path
after some time. Secondly, the wheel- or track-surface interaction is a source of
significant uncertainty due to slippage, variable surface and tire pressure etc.
Thus, the robot needs to use the local maps to correct for the aforementioned
sources of position inaccuracy. This is typically performed by associating the
image features from the map to the image features of the current view and using
these associations to determine the robot position relatively to the local map.
The relative position is then fused with the odometric information by a Kalman
or particle filter, obtaining a robot position estimate.
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Fig. 2. Navigation principle: a robot at a given distance from the path start (white
circle) select the closest map (red circle) and established correspondences between the
visible and map features. Difference between the horizontal coordinates of the feature
pairs allows to determine the robot steering velocity (shown as red arrows). (Color
figure online)

However, accurate and reliable position estimation usually requires that the
number of established associations is relatively high, most of correspondences
are correct, the features are evenly distributed across the image, they do not lie
on planar surfaces or deformable objects, features are not too far away and the
images are not blurred or deformed due to rolling shutter effects and the camera
is well calibrated. In the real world, many of these assumptions are violated,
which causes standard visual-based position estimation to be inaccurate or to
fail occasionally. On the other hand, if one needs to recover only the camera
heading relatively to the local map, most of the aforementioned conditions do
not have to be met, because the heading estimation techniques are simpler than
in the case of full 6d position estimation. The situation is even simpler for the
case of ground robots, which need to estimate the heading in one direction only,
because they move on (locally) planar surfaces. Moreover, the papers [22,35]
provide mathematical and experimental evidence, which indicates that unlike
for other navigation types, heading estimation in teach-and-repeat navigation
can keep the robot position error bound.

This allowed us to implement a simpler method of using the map information
to keep the robot close to the taught path. Our system uses the travelled distance
information to load an appropriate local map. Then, we extract the features from
the current camera view and associate them with the features from the map
using the ratio match method proposed in [25]. After that, we find the most
frequent horizontal displacement of the mapped and currently visible features
using a histogram voting scheme. This displacement, which corresponds to the
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robot lateral divergence from the taught path, is then fed into the robot steering
controller so that the robot turns to keep this displacement close to zero, see
Fig. 2. In this way, the robot is always steered towards the taught path.

2.5 Navigation System Model

From the aforementioned description, it’s clear that the robot is able to correct
the lateral position error as it moves along the path due to the heading correc-
tions. However, the correction of the longitudinal error component through the
heading correction is not straightforward as it’s somewhat counter-intuitive. We
will show that if the robot moves along a path that is not just a straight line,
the heading correction reduces both longitudinal and lateral error.

rrx ,y
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x

y

P

v

px ,y p

Fig. 3. Robot position error chart. The robot at a position xr, yr uses a local feature
map of the taught path at the position xp, yp. Courtesy of [22].

The basic position evolution model is shown in Fig. 3. Let us assume that
a robot navigated by our system is at position xr, yr and that it assumes that
it’s located on the taught path at position xp, xp. Thus, the robot position error
x, y equals to position xr, yr in the coordinate system of the reference point
xp, yp on the taught path. The evolution of the error over time ẋ, ẏ is affected
by the movement of the local coordinate system along the taught path and the
movement of the robot itself. As the robot moves forwards with velocity v, so
does the reference point (the path is indexed by travelled distance). Furthermore,
the reference system rotates with a velocity given by the local path curvature κ
and reference point velocity v. Thus, the position error evolution model is

ẋ = + κ v y − v + v cos(ϕ) + sx
ẏ = − κ v x + v sin(ϕ) + sy,

(1)

where κ v y, κ v x and −v are caused by the rotation and translation of the local
coordinate system as the reference point xp, yp moves along the taught path,
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ϕ is the robot heading in the local coordinate frame, the terms +v cos(ϕ) and
+v sin(ϕ) reflect the robot movement, and sx and sy are random variables, which
represent perturbations caused by odometric errors, wheel slippage etc. Since the
histogram voting method turns the robot to keep the local map features at the
same positions as seen from the reference point during the teaching, the robot’s
orientation ϕ in the path reference frame is determined by the average distance
of these features l and the robot lateral displacement from the path y, see Fig. 3.
In particular, the robot steers so that ϕ = − arctan(y/l). Considering that the
distance of the landmarks l is much higher than the absolute value of the robot
lateral displacement y, the robot orientation ϕ can be approximated as −y l−1.
Thus, one can approximate v sin(ϕ) by −v y l−1 and v cos ϕ by v, and rewrite
Eq. (1) as

ẋ = + κ v y − v + v + sx
ẏ = − κ v x − v y l−1 + sy.

(2)

Rewriting Eq. (1) in a matrix form results in(
ẋ
ẏ

)
=

(
0 +κ v

−κ v −v l−1

)(
x
y

)
+

(
sx
sy

)
, (3)

which is a linear continuous system in the form of ẋ = Ax + s. Such system is
stable, i.e. x, y do not diverge, if the real component of eigenvalues of its matrix
A are lower than 0. Factoring out the velocity v from A, the eigenvalues λ0,1

can be calculated as:(
λ0

λ1

)
= v eig

(
0 +κ

−κ −l−1

)
=

1
2
v

(
−l−1 ±

√
l−2 − 4κ2

)
. (4)

Assuming that the robot moves forward (v > 0) along a path with non-zero
curvature (κ �= 0) and the features it uses for navigation are in front of the
robot at a finite distance (0 < l < ∞), the real parts of eigenvalues λ0,1 are
always smaller than 0. Thus, if the robot moves forwards along a curved line,
both longitudinal (x) and lateral (y) components of its position error do not
diverge. �

The navigation model is rather crude and it reflects the real robot behaviour
only in cases, where the landmark distance l is much larger than the absolute
value of the lateral position error y. However, assuming l � |y| allows to cre-
ate a linear model and determine its stability through eigenanalysis. Another
important assumption is that the x component of the robot position error is not
large enough to cause the robot to use a wrong map for its heading correction –
this corresponds to small values of the random variable sx. Finally, we assume
that the robot can control its heading so that it sees the features almost at the
same spots as during the mapping phase, i.e. the absolute values of sy are small
as well.

Due to the odometry, vision and other errors, encompassed in the variables
sx, sy, the robot position error will not be zero. Rather, it will stabilise at some
value, which will be proportional to the size of perturbances sx, sy and inversely
proportional to the landmark distance l. For a detailed proof and discussion of
the model, see [22,35].
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2.6 System Implementation

To allow its easy portability and use by other research teams, we integrated our
method into the Robotic Operating System (ROS). The core scheme is shown in
Fig. 4. The odometry monitor node reads the data from the odometry and com-
putes travelled distance, which is transferred to the map preprocessor, navigator
and mapper nodes. The mapper node saves the current image with extracted fea-
tures, which are provided by the feature extraction node into the map storage.
It also records the speeds set by the operator. The feature extraction node is
grabbing the images from the on-board camera, extracts the features, and sends
them to mapper and navigator nodes. The map preprocessor node is used dur-
ing the navigation phase, see Sect. 2.4. At the start, the map preprocessor node
preloads all relevant local maps and operator commands. Then, based on the
information provided by the odometry monitor, it forwards the corresponding
commands and local map to the navigator. The navigator receives the currently
visible features from the feature extraction node, obtains the local map from the
map preprocessor and performs the histogram voting described in Sect. 2.4. The
result of the histogram voting is then converted into a steering correction, which
is added to the angular speed provided by the map preprocessor. The result-
ing speeds are sent to the robot, which repeats the original commands from the
teaching phase, while correcting its heading so that it stays on the path.

Fig. 4. Navigation system structure: ROS nodes and important topics.

All the aforementioned modules were implemented as ROS action servers
with dynamically reconfigurable parameters, so that the robot operator can
change their parameters during runtime or activate and deactivate the mod-
ules in case they are not necessary to run during the teaching or replay phase.
Action servers also provide the operator with feedback which shows the current
state of the system. Thus, the operator can see the currently used map, path
profile data, number of visible image features, results of the histogram voting
method etc. The described system is available as an open source code at [27].

3 Experimental Evaluation

The purpose of the experiments is to verify the ability of the navigation system
to keep the autonomous vehicles on the taught path. The system is based on the
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model introduced in Sect. 2.5, which predicts that a robot driven by our naviga-
tion system is able to gradually reduce its position error and thus, keep it within
acceptable bounds. The aim of the experimental setup for each autonomous vehi-
cle, which we were working with, was to verify the aforementioned hypothesis.
To do so, we first teach the given robot a closed path. Then, we introduce a
large position error by displacing the robot from the path start. After that, we
let the robot drive along the path several times, and after each path traversal,
we measure (typically by hand) its distance to the path start. This distance
corresponds to the robot position error after traversing one loop of the path. If
the model introduced in Sect. 2.5 is correct, and the values of sx, sy are small,
then the initial, artificially introduced position error should gradually diminish,
and the robot position error should stabilise. This stabilised value indicates the
overall navigation error of our system for a given platform and environment. To
thoroughly evaluate the correctness of the mathematical model and robustness
of the navigation method, we performed the aforementioned experiments using
several mobile vehicles with a different type of kinematics. Videos of some of
the experiments are provided on a special webpage reachable from the website
of the navigation system [27].

The second part of our evaluation is aimed at a more practical issue: inte-
gration. We simply measured the time it took us to deploy our system onto a
given platform and to perform the deployment. Since the deployment is divided
into two steps: integration and debugging, we measure these times separately.
Although these times depend on the experience of the system integrators and
are inherently subjective, they still indicate how difficult was the deployment
across the individual platforms.

3.1 Cameleon Robot

The first platform used in the experiments is the tracked robot CAMELEON
ECA, which is a 0.7 × 0.6 m vehicle with a payload over 25 kg. The platform
has two main independently controllable tracks and two auxiliary flippers for
movement in difficult terrain. It is also equipped with two cameras, one in the
front and one in the back of the body of the robot. As these cameras are located
too low over the ground, they are not suitable for visual navigation in grassy
terrains. Thus, we installed eCon’s TARA stereocam, and we use the images
from its left camera. This camera is attached to the robot superstructure, which
also contains a stand for the control laptop and the Fenix 4000 lumen torch used
for night experiments. For the fully equipped Cameleon platform, see Fig. 5.

The experiments took place at Hostibejk Hill in Kralupy nad Vltavou,
Czechia, where the robot repeatedly travelled a 70 m long, complex path over
concrete, grass and asphalt surfaces. Approximately one-third of the path, a
small building was in the robots field of view. Otherwise, it perceived mostly
trees and natural structures. This experiment was unique because of the tracks
the platform consisted of, and these cause its odometry to be highly inaccurate.
Despite that, the robot could quickly suppress the position error we introduced,
stabilising it at values below 0.1 m, see Fig. 5.
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Fig. 5. Cameleon robot and its position error during the autonomous path traversal.

Integration of the system onto the Cameleon platform required to implement
a ROS bridge to command the robot and to obtain odometry, which took 5 h of
implementation and 1 h of testing time. The experiment itself took 1 h. The main
problems encountered were caused by occasional ‘freezing’ of the PC, which took
1–3 s. During these periods, the robot was driving incorrectly and often deviated
from the intended path. However, as soon as the system started to react, the
robot started to follow the taught path and reduced the position error rapidly.

3.2 MMP-5 Robot

To demonstrate the system’s ability to work indoors on a small robot, we
deployed it on the MMP-5 platform, which is made by TheMachineLab. It is
a small robot with dimensions 0.3 × 0.3 m, payload over 3 kg and four-wheel
differential drive along with a control unit, which can control each wheel inde-
pendently via a simple serial protocol. This platform, however, does not provide
odometry, so we estimated the travelled distance by time and by the motors’
PWM duty. We equipped this robot a low-resolution USB camera and a com-
puter based on an AT3IONT-I miniATX board with Intel Atom 330 CPU.

The indoor experiments took place in the entrance building of the Czech
technical university in Prague at Karlovo Náměst́ı campus. We taught the robot
a 17 m lemniscate-shaped path, displaced it from the path start by 1.4 m and
let it traverse the path 20 times. The progress of the robot was monitored by
an external localisation system [20], which was tailored specifically for small
platforms [1]. The use of the external localisation system, based on a high-
resolution camera, allowed to monitor the evolution of the robot position error
over time with centimetre accuracy, see [22]. Furthermore, the system was used
to determine the robot position error after each path traversal, so we did not
have to measure the displacement by hand. The experimental results, shown
in Fig. 6, indicate that even a robot without wheel encoders and only a low
resolution camera, which suffered from motion blur, was able to navigate through
the taught path while reducing the initial error. The overall achieved position
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Fig. 6. MMP-5 robot and its position error during the autonomous path traversal.

error was about 0.1 m, and the integration and testing of the system took around
4 and 2 h respectively.

The main problem faced was related to the low computational power of the
onboard PC, which caused issues with image processing and real-time control.

3.3 John Deere Tractor

The John Deere X300R is a small tractor, see Fig. 7, with gasoline 13.8 kW
motor and automatic K46 hydrostatic transmission. It weights around 300 kg.
Its wheelbase is 1.25 m and overall dimensions are 2.5×1.0×1.1 m This machine,
which has a car-like drive, was modified and equipped with hydraulic steering
and linear motor with position feedback for pedal control. Due to the mechanics
of the control system, both steering and velocity can be controlled only coarsely
and with a significant time delay – this corresponds to large values of sx and sy
in the navigation model in Eq. (3).

The tractor is also equipped with a set of sensors to support autonomy:
4 emergency stop buttons, active front bumper, rotary encoders, Hall sensor
for measuring steering angle, set of indicators and switches (including man-
ual/automatic digital input), 2D Lidar SICK LMS100 and a AV3135 Dual Sensor
H.264 Day/Night camera. The low level electronic components (pedal position,
encoders, steering, I/O) are controlled via CAN bus modules, connected to an
APU2 computer. The navigation algorithm was running on the same PC as in
the case of Cameleon ECA, i.e. Intel i3 laptop, which was connected to APU2
computer via ethernet. Apart from the laptop, which was running the navigation
system, we installed our own camera to the tractor front.

This experiment took place in an experimental agricultural field in the cam-
pus of the Czech University of Life Sciences in Prague. During the experiments,
the system had to deal with images blurred due to the engine vibrations, as
well as rain, which affected both the environment appearance and wheel-surface
interaction. Eventually, the rain became too heavy and we had to terminate
the experiment prematurely. Despite of that, the robot was able to suppress the
initial position error, stabilising it around 0.5 m, see Fig. 7.
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Fig. 7. John Deere platform and its position error during the autonomous drive.

Integration of the system took 2 h, initial testing 5 h and the experiment
took 1 h. The main encountered problems were caused by rather slow and coarse
hydromechanical control of the steering and velocity. Furthermore, we experi-
enced a significant lag when retrieving images from the robot’s IP camera, and
thus, we had to install our own USB cam.

3.4 TAROS 6 × 6 Combat Support UGV

We tested the system on a large, 6 × 6 drive unmanned ground vehicle called
‘TAROS’, developed by the VOP company. The primary purpose of TAROS is
direct support of mechanised, reconnaissance and special forces in their oper-
ations. Currently, the TAROS platform offers long-range teleoperation, GPS-
based waypoint navigation and autonomous people following. However, its sen-
sory suite, consisting of a Velodyne 3d lidar, three 2d SICK lidars and pan-tilt
cameras, is sufficient for fully autonomous operation in adverse terrain.

One of the main features of TAROS is its modularity. Its core module,
which contains all systems required for autonomous operation, is propelled by
four electrically-driven wheels with independent suspensions. The wheels are
equipped with odometric sensors and can be steered and driven individually.
Each TAROS extension module adds two individually steered wheels, which
allows configuring TAROS as 6 × 6 or 8 × 8 wheel drive UGV. For our experi-
ments, we used the TAROS in 6×6 configuration with a hybrid power extension
module.

The TAROS control system offers a convenient serial protocol which allows
an ordinary PC to retrieve low-level (such as specific wheel angles) as well as
high-level (such as the distance of the closest obstacle) information. Further-
more, the protocol enables low-level control of individual wheel actuators as
well as high-level driving modes, which allow controlling the angular and for-
ward speed in four different wheel configurations. The chosen protocol allowed a
quick implementation of a basic ROS driver for the TAROS platform. The driver
retrieves odometric information from the TAROS middle wheels and utilises a
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driving mode, which controls the TAROS heading by steering the forward and
rear wheels while keeping the middle wheels straight.

Similarly to the previous case, the platform’s IP camera images were provided
with a significant delay, and thus, we used the USB camera of the i3 laptop, which
was used in the previous experiments.
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Fig. 8. TAROS platform and its position error during the autonomous drive.

The experiments took place at a small testing polygon in VOP CZ, which
produces the TAROS platform. During the test, the robot was taught a 100 m
long, closed path, and then it was displaced by 4.5 m and let to traverse the path
autonomously 11 times. The error was gradually diminished, and despite of the
platforms large size, the error was finally reduced below 0.2 m, see Fig. 8. The
sudden increase of the position error in the 5th loop traversal was caused by the
control computer 3 s ‘freeze’, leading to an overshoot at the path end. The Fig. 8
shows that as the robot continued to traverse the path, this error was gradually
diminished as well.

Integration of the system took 2 h, its preliminary testing 3 h and the exper-
iment itself took 1 h. Our software expected that the odometry is provided with
at least 10 Hz update rate while the TAROS robot provides odometric informa-
tion at 5 Hz. A significant part of the testing time was dedicated to identifying
and correcting this issue in software.

3.5 Thorvald Agricultural Robot

Thorvald is a platform intended for various agricultural scenarios. This platform
can be equipped with several different modules, which extends the variety. It
has four wheels, which can be steered and actuated individually and the width
between the wheels can be changed depending on the desired agricultural appli-
cation. We have used the standard wheel configuration with the width of the
wheelbase of 1.5 m. All the wheels are equipped with suspension modules, which
allows the platform to drive in rough terrain. Low-level robot control is per-
formed by an onboard PC, which was connected to our Intel i3 laptop over
ethernet. Again, we used a standard USB camera as the main sensor.
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Fig. 9. Thorvald robot and the path traversed during its test.

In the case of Thorvald, we took another approach to the testing. Instead of
traversing a single loop several times, we taught it a 600 m long route around the
Isaac Newton building of the Lincoln University, displaced the robot by 2 m and
traversed this path once. Furthermore, during autonomous traversal, we had to
manually steer the robot about 2 m from the path to avoid a large van, which
stopped in the way. Despite that, the robot could reach the path end location
with less than 0.3 m error.

Integration of the control system took approximately 1 h, and testing took
1 h. The experiment itself took 2 h. The main issue encountered was related to
interfacing the robot control PC with the laptop running the navigation system.

3.6 STOP Robot

Finally, to demonstrate that the system can be deployed on indoor platforms
as well, we tested it using the STOP robot, see Fig. 10. The STOP robot is
a low-cost mobile robot platform for monitoring and surveillance of buildings
and facilities, aiming at keeping intruders away, preventing the misuse of spaces,
and more importantly, to act in a timely manner in case someone infiltrates the
premises or violates rules of use of the spaces, e.g. by alerting security oper-
ators [32]. Several STOP robots, which are intended to cooperate, are under
development by Ingeniarius, Ltd. from Coimbra, Portugal within the scope of
the STOP R&D Project initiative1. The robot features a 360-degree RPLIDAR
A2 laser range finder, an Orbbec Astra RGBD camera, a touchscreen interface,
and a powerful Intel NUC mini PC. Low-level robot control is performed by
a Particle Photon board, which is connected to the main NUC mini PC over
serial. Being fully ROS-compliant, the robot benefits from navigation software,
and a specifically tailored localisation system, which fuses laser scan matching
odometry, global orientation from a digital compass, encoder odometry and an
ICP correction system for global localisation. In our experiments, we kept the
aforementioned localisation system on, so that we could use it as a source of
ground truth position information. As in the previous experiments, the robot

1 http://stop.ingeniarius.pt.

http://stop.ingeniarius.pt
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was controlled only by the navigation method proposed, which is solely based
on odometric data and monocular camera image stream.
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Fig. 10. STOP robot platform and its position error during the autonomous drive.

The experimental evaluation took place in an entrance hall of the Ingeniarius
Ltd., which produces the STOP robot. The robot was taught a ∼10 m long path,
then it was displaced by 1 m, and taught to traverse the path autonomously 10
times. The error gradually diminished and stabilised at ∼0.1 m, see Fig. 10.

Before integration, we needed to perform the system update, which took
more than 3 h. Since the robot supports ROS natively, integration took less than
1 h preliminary testing 1 h, and the experiment itself lasted 40 min. The main
issue encountered was caused by different versions of OpenCV software libraries
for image processing.

3.7 Experiments Summary

The experiments, summarised in Table 1 indicated that the ‘convergence’ the-
orem, introduced in Sect. 2.5 and papers [22,35], is valid for different types of
vehicles, including tracked, car-like, with independently steered wheels, electri-
cally or hydraulically controlled, or with combustion engines. Furthermore, the
accuracy of the navigation exceeded the typical accuracy of (non-RTK) GPS
service, the robots were able to correct initial position errors up to 4.5 m (see
Fig. 8), and integration of the system into various platforms was relatively quick
and did not require special customisation or extensive parameter tuning. Thus,
the experimental results were not only in accordance of the ‘convergence’ theo-
rem predictions, but they also demonstrated the maturity of the navigation sys-
tem, which is provided as open-source C++ code at www.github.com/gestom/
stroll bearnav. The summary of the experiments is provided in Table 1, which
shows the achieved navigation accuracy, deployment, testing and experimental
times.

The main lesson learned from the experiments is that while the navigation
system is mature enough to be easily integrated into various platforms, its relia-
bility is still affected by software issues originating from the fact, that the Robotic

www.github.com/gestom/stroll_bearnav
www.github.com/gestom/stroll_bearnav
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Table 1. Navigation accuracy and integration times on different platforms

Platform Navigation Time [h] required for

Accuracy [m] Travelled [m] Integration Testing Experiment

Cameleon 0.05 2000 5 1 1

MMP5 0.07 340 4 2 2

John Deere 0.50 180 2 5 1

TAROS 0.15 1100 2 3 1

Thorvald 0.30 600 1 1 2

STOP 0.09 100 1 1 1

Operating System is running on Linux distributions, which are not meant to pro-
vide real-time response.

3.8 Additional Simulations

Since the aforementioned experiments were aimed at proving the system accu-
racy in real scenarios, the number of experimental trials and scenarios was rather
limited. To evaluate the method in a wider set of trajectories and environmental
configurations, we simulated the system behaviour in 1000000 randomly gener-
ated scenarios with trajectory curvatures ranging from 0.001 to 1 m−1, landmark
distances between 0.1 and 2 m, initial robot position errors between 0 and 1 m in
both x and y directions, odometric errors up to 5% and heading estimation errors
up to 5◦. The simulations indicated that for every of the 1000000 configurations,
the robot gradually converged to the intended trajectory.

4 Conclusion

We presented a versatile teach-and-repeat vision-based navigation system, which
is easy to deploy on a variety of ground robot platforms. The system is capable
to guide mobile vehicles along a path previously taught by a human opera-
tor. Instead of creating a globally-consistent metric map, our method creates a
sensorimotor record of a teleoperated drive, consisting of odometric and visual
information. The autonomous navigation system is based on the retrieval and
replay of the recorded experience instead of estimating the global position of
the robot in the 2d/3d space. We presented a mathematical model of the navi-
gation, which allows to calculate the evolution of the robot position error over
time. Then, through eigenanalysis, we show that the robot position error does
not diverge, which ensures navigation accuracy and reliability.

While being computationally efficient, the system does not require camera
calibration, and it can deal with realistic outdoor lighting conditions. Further-
more, the system is easy to operate, because it only requires that the robot is
manually guided along a desired path, which it can repeat autonomously later
on.
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To verify the correctness of the ‘convergence’ theorem the system is based
on, we tested it in simulation and on a variety of ground robot platforms with
different types of kinematics and propulsion. The experiments indicated not only
that the navigation accuracy exceeds the typical non-RTK GPS precision, but
also that the integration of the system into a new robot is straightforward and
it takes only a few hours. The presented system, which was already deployed
in several scenarios including aerial inspection [13,23,30], is provided as open
source at www.github.com/gestom/stroll bearnav. Datasets and videos of the
experiments are available at www.github.com/gestom/stroll bearnav/wiki.
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vehicle. We would like to thank also Milan Krouĺık and Jakub Lev from the Czech
University of Life Sciences Prague for their positive attitude and their help to perform
experiments with the John Deere tractor.

References
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image processing methods for outdoor autonomous vehicles. In: Mazal. J. (ed.)
MESAS 2018. LNCS, vol. 11472, pp. 456–476 (2018)

17. Zhang, N., Warren, M., Barfoot, T.: Learning place-and-time-dependent binary
descriptors for long-term visual localization. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE (2016)

18. Holmes, S., Klein, G., Murray, D.W.: A square root unscented kalman filter for
visual monoSLAM. In: International Conference on Robotics and Automation
(ICRA), pp. 3710–3716 (2008)

19. Kosaka, A., Kak, A.C.: Fast vision-guided mobile robot navigation using model-
based reasoning and prediction of uncertainties. CVGIP: Image Underst. 56(3),
271–329 (1992)
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