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Abstract— Performing a patrolling mission with multiple
mobile robots is a challenging task that requires effective
coordination between agents. While predefined patrol circuits
may lead to suitable routing performance, their deterministic
nature eases the task of potential intruders. Therefore, the need
to propose probabilistic strategies becomes evident.

In this paper, a new multi-robot patrolling strategy is
proposed, in which concurrent learning agents adapt their
moves to the state of the system at the time, using Bayesian
decision. When patrolling a given site, each agent evaluates
the context and adopts a reward-based learning technique that
influences future moves. Experiments show the potential of
the approach, which outperforms several other state-of-the-art
strategies.

I. INTRODUCTION

Security applications are a fundamental task with un-

questionable impact on society. Combining this fact with

the technological evolution observed in the last decades,

it becomes clear that robot assistance can be a valuable

resource in monotonous, repetitive and dangerous missions

by taking advantage of robots’ expendability.

One of such missions is multi-robot patrolling, which

requires agents to coordinate their decision-making to visit

every position in the environment (or at least those that need

surveillance) so as to achieve collective optimal performance.

Despite its high potential utility in security applications, only

recently the Multi-Robot Patrolling Problem (MRPP) has

been rigorously addressed using principles of task allocation

[1], graph theory [2], market-based coordination [3], game

theory [4], Markov decision processes [5], artificial forces

[6] and others.

Several contributions to the MRPP at a theoretical level

have also been presented and it has been shown that the

problem is NP-Hard [2], [7]. Within all the strategies pursued

so far, the creation of adaptive behaviors that allows agents

to learn how to effectively patrol a given scenario are the

more promising. Moreover, such adaptability fosters the

unpredictability principle in a way that intruders are unable

to anticipate patrolling trajectories. Nevertheless, the use of

such techniques are far from being straightforward. Certain

works in this field have adopted machine learning methods

aiming to adapt agents’ behavior. For instance, the work
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of Ishiwaka et al. [8] proposed reinforcement learning to

predict the location of teammates as well as the movement

direction to a common target. Another pioneering approach

was proposed by Santana et al. modeling the MRPP as a Q-

learning problem in an attempt to allow automatic adaptation

of the agents’ strategies to the environment [9]. In brief,

agents have a probability of choosing an action from a

finite set of actions, having the goal of maximizing a long-

term performance criterion, in this case, node idleness. Two

reinforcement learning techniques, using different commu-

nication schemes were implemented and compared to non-

adaptive architectures. Although not always scoring the best

results, the adaptive solutions are superior to other solutions

compared in most of the experiments. The main attractive

characteristics in this work is distribution (no centralized

communication is assumed) and the adaptive behavior of

agents, which is usually highly desirable in this domain.

Alternatively to reinforcement learning, some strategies

have been using stochastic approaches that benefit from

probabilistic decision-making to overcome the determinis-

tic nature of classic patrolling applications. For instance,

in [5] the patrolling problem is casted as a multi-agent

Markov decision process, where reactive and planning-based

techniques are compared. The authors concluded that both

perform similarly, with the latter being slightly superior in

general, since it looks further ahead than the former, which

is purely local. However, the reactive technique runs much

faster, suggesting that a simple and computationally cheaper

approach can be used in many applications, instead of more

complex strategies which only perform slightly better. Chen

and Yum [10] also formulated the problem as a Markov

decision process and proposed a patrol routing strategy under

a finite horizon approximation.

In this work, a new distributed and adaptive approach for

multi-robot patrol is proposed. Each robot decides its local

patrolling moves online, without requiring any central plan-

ner. Decision-making is based upon Bayesian reasoning on

the state of the system, considering the history of visits and

teammates actions, so as to promote effective coordination

between patrolling agents. Experimental results illustrate the

advantages of using the proposed technique, when compared

to several state-of-the-art strategies.

II. IDLENESS CONCEPT

In this work, the problem of efficiently patrolling a given

environment with an arbitrary number of robots is studied.

Agents are assumed to have an a priori representation of

the environment and, in order to easily assess the topology

of its surroundings, a graph extraction algorithm is adopted



to obtain an undirected navigation graph G = (V, E). G is

composed of vertices vi ∈ V and edges ei,j ∈ E , where

each vertex represents a specific location that must be

visited regularly and each edge represents the connectivity

between these locations. The MRPP is therefore reduced to

coordinate robots in order to frequently visit all vi ∈ G,

ensuring the absence of atypical situations with regard to

an optimization criterion. This criterion should be defined

to enable comparison of performance of different patrolling

algorithms. Diverse metrics have been previously proposed to

access the effectiveness of multi-robot patrolling strategies.

Typically, these are based on the idleness of the vertices, the

frequency of visits or the distance traveled by agents [11].

In this work, the first one has been considered [12], given

that it measures the elapsed time since the last visit from any

agent in the team to a specific location. The idleness metric

uses time units, which is particularly intuitive to analyze.

The instantaneous idleness of a vertex vi ∈ V in time step

t is defined as:

Ivi(t) = t− tl, (1)

where tl corresponds to the last time instant when the vertex

vi was visited by any robot of the team. Consequently, the

average idleness of a vertex vi ∈ V in time step t is defined

as:

Ivi(t) =
Ivi(tl) · Ci + Ivi(t)

Ci + 1
, (2)

where Ci represents the number of visits to vi. Finally,

in order to obtain a generalized performance measure, the

average idleness of the graph G (IG) is defined as:

IG =
1

|V|
|V|∑
i=1

Ivi , (3)

where |V| represents the cardinality of the set V . In the

beginning of the experiments, it is assumed that for all

vi ∈ V , Ivi(0) = 0, as if every vertex had just been

visited at the beginning of the mission. Hence, there is a

transitory phase in which the IG values tend to be low, not

corresponding to the reality in a steady-state phase. For this

reason, the final IG value is measured only after convergence

to the steady-state.

The patrolling problem with R robots can be described as

the problem of finding a set of R paths that visit all vertices

vi ∈ V of G, with the overall team goal of minimizing

IG . Note, however, that such paths are computed online and

locally during the mission, in order to adapt to the system’s

needs.

III. CONCURRENT BAYESIAN LEARNING STRATEGY

In a previous work of the authors [13], simple Bayesian-

based techniques to tackle the MRPP were studied. Even

though the results obtained were satisfactory, two main

drawbacks were identified: a uniform prior distribution was

adopted, assuming that all decisions were equiprobable; and

          
 

          
 

 
          

                 
 

 

 
 
 
 
 

 

 
 

 

 
 

 

 

 

 

 
     

   
 

 
          

 
   

  

     

Fig. 1: Illustration of a patrolling decision instance.

the likelihood distributions were immutable, representing a

fixed function of random variables.

In this work, the previous Bayesian models proposed are

extended with likelihood reward-based learning and contin-

ued prior update. More specifically, the model represents

the decision of moving from one vertex of the graph to

another. For β neighbors of the current vertex v0, where

β = deg(v0)
1, the model is applied β times. Each decision

is considered independent and the agents have the ability

to choose the action which has the greatest expectation

of utility, weighted by the effects of all possible actions.

Consequently, each robot’s patrol route is built progressively,

at each decision step, adapting to the system’s needs, i.e.,
aiming at minimizing IG . In the next section, more details

on the Concurrent Bayesian Learning Strategy (CBLS) to

solve the MRPP are presented.

A. Distribution Modeling

As stated before, when reaching a vertex v0 of the nav-

igation graph G, each robot is faced with a decision stage,

where it must decide the direction it should travel next (cf.
Fig. 1). To that end, two fundamental random variable are

defined. The first one is boolean and simply represents the

act of moving (or not) to a neighbor vertex vi:

movei = {true, false}, (4)

while the second one is called arc strength θ0,i, which

represents the suitability of traveling to a neighbor vi using

the arc that connects v0 to vi:

θ0,i ∈ θ; 0, i ∈ N0; and |θ| = 2|E|. (5)

Note that G is an undirected graph, where an edge ej,k
represents a connection from vj to vk and vice versa. ej,k
has an edge cost or weight |ej,k| = |ek,j |, given by the

distance between the two vertices. Nevertheless, the term

“arc” instead of “edge” is used intentionally, since it implies

1The degree (or valency) of a vertex of a graph is the number of edges
incident to the vertex.



a direction of traveling. In a situation where an agent is at

vj , it will look for the suitability of traveling to vk, given by

θj,k. Under those circumstances, the suitability of traveling

in the opposite direction is not relevant, thus θj,k �= θk,j . As

a consequence, the set θ has a population of 2|E|, where |E|
is the cardinality of the set of edges E of G, and informally,

higher values of arc strength θ0,i lead to the edge being

traversed more often in the specified direction.

In this work, agents calculate the degree of belief (i.e., a

probability) of moving to a vertex vi, given the arc strengths,

by applying Bayes rule:

P (movei|θ0,i) = P (movei)P (θ0,i|movei)

P (θ0,i)
. (6)

The posterior probability P (movei|θ0,i) is estimated via

Bayesian inference from the prior P (movei) and likelihood

P (θ0,i|movei) distributions. The denominator term is re-

garded as a normalization factor [15], being often omitted

for the sake of simplicity.

The prior represents the belief obtained from analyzing

past data. Naturally, in the MRPP, prior information about

each vertex is encoded in the average idleness Ivi
of a vertex

vi given by (2). Therefore, P (movei) is defined as:

P (movei) =
Ivi

|V|∑
k=1

Ivk
, (7)

thus decisions of moving to vertices with higher values of

average idleness have intuitively higher probability. During

the patrol mission, robots are continuously visiting new

places and the IV values change over time. Each agent

computes these values internally by tracking its own visits to

V and communicating to other teammates when they arrive

to a new vertex. In order to make an informed decision, at

each decision step, the agent updates the prior information

through (7), just before adopting (6) to obtain a degree of

belief of moving to a neighbor vertex vi.

In addition to the prior distribution, it is also necessary

to define the likelihood through a statistical distribution to

model the arc strength θ0,i. In the patrolling problem, agents

must visit all vi ∈ G, thus, theoretically, assigning a uniform

value for every arc would not be unreasonable. However,

in such a dynamic system, where the number of visits to

different locations in the environment is permanently evolv-

ing, it is usually advantageous to avoid traversing certain

edges at a given time and favoring the use of others, in order

to improve performance. Furthermore, task effectiveness is

strongly related to the environment topology.

Hence, in the next subsection, a reward-based learning

strategy to model and continually update the likelihood

distribution is proposed in order to adapt to the system’s state

according to previous decisions, having a high impact on the

behavior of robots and aiming at optimizing the collective

performance.

B. Multi-Agent Reward-Based Learning

In general, reward-based learning methods are attractive

since agents are programmed through reward and punish-

ments without explicitly specifying how the task is to be

achieved [16]. In this work, Bayesian Learning is employed

to estimate the likelihood functions. Being a cooperative

multi-robot task with lack of centralized control, with decen-

tralized and distributed information and asynchronous com-

putation, multiple simultaneous learners (one per patrolling

agent) are involved.

The concept of delayed reward with a 1-step horizon

model is explored. Each agent chooses an action of moving

from v0 to a neighbor vi, based on (6). After reaching vi,
the information on its neighborhood has changed, namely the

instantaneous idlenesses have been updated, i.e., Ivi(t) = 0
and Iv0(t) > 0. Through information observed after making

the move, a reward-based mechanism is used to punish or

benefit the arcs involved in the decision to move from v0 to

vi. This influences future moves starting in v0, by introducing

a bias towards arcs which ought to be visited ahead in time.

Henceforth, the reward-based learning method is ex-

plained. When the robot decides which one of the β neighbor

vertices of v0 is going to be visited next, each neighbor vi
will have an associated degree of belief given by the posterior

probability. Therefore, it is possible to calculate the entropy:

H(movei|θ) = −
β∑

i=1

P (movei|θ0,i) log2(P (movei|θ0,i)),
(8)

which measures the degree of uncertainty involved in the

decision taken, being chosen for this reason as the basis

for the punish/reward mechanism. The confidence on the

decision taken is inversely proportional to the entropy H .

Therefore, larger rewards and penalties are assigned to deci-

sions with higher confidence (lower entropy). Note, however,

that distinct vi have different deg(vi) and, as a result, β
varies for each decision instant. Therefore, the entropy is

normalized to assume values in [0, 1]:

H(movei|θ) = H(move|θ)
log2(β)

. (9)

After deciding and moving to a given vk, the robot

computes rewards for each arc between v0 and its neighbor

vertices vi (including vk) involved in the previous decision

using:

γ0,i = S0,i(Ci, Ivi(t)) · (1−H(move|θ)), (10)

with:

S0,i ∈ {−1, 0, 1}. (11)

S0,i gives the reward sign, providing a quality assessment

which determines whether a penalty (S = −1), a reward

(S = 1) or a neutral reward (S = 0) should be given.

As can be seen, this function uses up-to-date information,



namely the number of visits to vi, given by Ci, and the

current instantaneous idleness Ivi(t).
Prior to describing how S0,i is obtained, the normalized

number of visits ζi is defined in (12). Note also that NG(v0)
represents the open neighborhood of v0, i.e., the set of

adjacent vertices of v0.

ζi =
Ci

deg(vi)
, (12)

β = deg(v0) = |NG(v0)|. (13)

The sign of S is obtained using the set of rules defined below,

which are checked as soon as the agent reaches vi:

S0,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if (β > 1) ∧ ( argmax
j∈NG(v0)

ζj = i) ∧
(| argmax

j∈NG(v0)

ζj | = 1);

−1, if (β > 1) ∧ ( argmax
j∈NG(v0)

ζj = i) ∧
(| argmax

j∈NG(v0)

ζj | > 1) ∧ ( argmin
j∈NG(v0)

Ivj (t)) = i);

1, if (β > 1) ∧ ( argmin
j∈NG(v0)

ζj = i) ∧
(| argmin

j∈NG(v0)

ζj | = 1);

1, if (β > 1) ∧ ( argmin
j∈NG(v0)

ζj = i) ∧
(| argmin

j∈NG(v0)

ζj | > 1) ∧ ( argmax
j∈NG(v0)

Ivj
(t)) = i);

0, otherwise.
(14)

ζi is used in the punish/reward procedure because higher

degree vertices are naturally more visited than vertices

with lower degree, being often traversed to reach isolated

vertices that tend to have a lower number of visits. Note

also that argmax
j∈NG(v0)

ζj and argmin
j∈NG(v0)

ζj may return more than

one solution, therefore the cardinality of the solution set,

| argmax
j∈NG(v0)

ζj | and | argmin
j∈NG(v0)

ζj |, is checked to ensure that

strictly one reward and one punishment are assigned. As

such, the assignment of S0,i respects the following criteria:

• S0,i = −1, when the degree of v0 is higher than one

(β > 1) and the normalized number of visits to vi (ζi) is

maximal in the neighborhood of v0. In case there is more

than one vertex with maximal ζ, a negative reward is given

to the one with lower instantaneous idleness Ivj (t) between

those.

• S0,i = 1, when the degree of v0 is higher than one

(β > 1) and ζi is minimal in the neighborhood of v0. In

case there is more than one vertex with minimal ζ, a positive

reward is given to the one with higher instantaneous idleness

Ivj (t) between those.

• S0,i = 0, in every other situation.

Fig. 2: Environment used in the experiments with respective topological
map.

In the beginning of the mission, when t = t0, all arcs
strength θ0,i are equal to a real positive number κ:

∀θ0,i ∈ θ, θ0,i(t0) = κ. (15)

As the mission evolves, the agent updates θ0,i through:

θ0,i(t) = θ0,i(t− 1) + γ0,i(t). (16)

Note that the larger the value of κ is set in (15), the

less immediate influence the rewards received will have on

θ0,i. In the experimental tests, κ = 1.0 was used. This

reward-based procedure is expected to make the values of

θ0,i fluctuate as time goes by, informing robots of moves

which are potentially more effective, but keeping in mind

that robots must visit all vertices vi in the patrolling mission.

Finally, the learnt likelihood distribution is obtained

through normalization of θ0,i:

P (θ0,i|movei) =
θ0,i

|E|∑
j=1

|E|∑
k=1

θj,k

, (17)

being updated at each decision step and making use of

experience acquired in the past for future decisions.

C. Decision-Making and Multi-Agent Coordination

In CBLS each independent agent is adapting its behavior

via its own learning process and has no control or knowledge

of how other agents behave nor their internal state, i.e.,
they do not know their teammates’ likelihood distribution

P (θ0,i|movei) and cannot predict their moves.

In collective operations with a common objective, co-

ordination among agents plays a fundamental role in the

success of the mission. Particularly in this context, it is

highly undesirable that agents move to the same locations.

Therefore, an asynchronous and distributed communication

system is used to inform teammates of an agent’s current

vertex v0, as well as the vertex vi chosen for its next move.

By simply exchanging this messages with its teammates,

each robot can update the information about the state of the

system, namely the idleness values, and decide its moves tak-

ing that information into account, as well as its progressively

acquired experience. Local coordination arises by inspecting

if another robot has expressed intention to move to a given

vertex vi in the local neighborhood and if so, remove vi
from the decision. Finally, the decision-making process of the
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Fig. 3: Evolution of the absolute reward values along four experiments with different teamsize.
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Fig. 4: Evolution of the likelihood distribution in a mission with 2 robots.
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agent consists of choosing the move from v0 to the neighbor

vertex vj with the maximum probability among all possible

decisions:

movej = true : j = argmax
i∈NG(v0)

P (movei|θ0,i) (18)

IV. RESULTS AND DISCUSSION

In order to assess the performance of CBLS, a set of

simulation experiments have been conducted. To that end,

the environment illustrated in Fig. 2 has been used to test the

approach with different teamsizes of R = {1, 2, 4, 6, 8, 12}
robots. A recognized simulator with realistic modeling was

chosen: the Stage 2D multi-robot simulator, while ROS was

adopted to program the robots.

The graph information of the environment is loaded by

every robot in the beginning of each simulation, which

then runs the described algorithm. Robots navigate safely

in the environment by heading towards their goals while

avoiding collisions through the use of ROS navigation stack

and an adaptive Monte Carlo localization approach. Addi-

tionally, robots have non-holonomic constraints and travel

at a maximum velocity of 0.2 m/s. All the simulations

conducted respect a stopping condition determined by 4

complete patrolling cycles i.e., after every vi ∈ G has been

visited at least 4 times. This stopping condition is adequate,

because IG converged in all experiments conducted.

It can be seen in the histograms of Fig. 4 the evolution of

the likelihood function in the example of a patrolling mission

with two robots. Note that each robot apprehends a different

distribution and has no control or knowledge on the internal

state of its teammate. As expected, peaks in the histograms

emerge with the increasing number of decisions. Despite that,
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Fig. 5: Overall results running CBLS with different teamsize.

it is also clear that values fluctuate around the initial uniform

value, which comes as a consequence of robots having to

visit every vertex vi ∈ G.

Another interesting aspect observed in the experiments is

the descending trend shown by the absolute reward values

along different experiments, which are given by the (1−H)
factor in (10). Fig. 3 illustrates how these values evolve

in missions with four different teamsizes. Despite the oc-

casional peaks that occur with larger number of robots, such

values tend to decrease with the number of decisions. This is

because, in general, as the system progresses, the IV values

of different vertices become more balanced and, as a result,

the degree of belief in moving to distinct neighbors comes

closer. In such situations, the closer the posterior probabilities

are, the higher the entropy becomes, therefore the reward

values descend gradually. The peaks observed are justified

by situations where agents share nearby areas, temporarily

perturbing the IV values in the neighborhood of other agents.

For that reason, peaks are more observable in larger teams.

Moving on to the performance of the algorithm, the

boxplot chart in Fig. 5 represents the IV values (in seconds)

for each tested teamsize. The average value is represented by

a black cross, providing a generalized measure: the average

graph idleness, IG (cf. Eq. 3). The ends of the blue boxes

and the horizontal red line in between correspond to the first

and third quartiles and the median values of IV , respectively.

As expected, the idleness values decrease when the num-

ber of robots grow. Despite the increasing performance

displayed by the CBLS approach, the individual contribution

of adding more robots gradually reduces with teamsize.

Group productivity will eventually converge with a large



TABLE I: Final IG values (in seconds) using different strategies and the map of Fig.2.

Teamsize CR HCR HPCC CGG MSP GBS SEBS CBLS
1 1315.79 1283.59 1235.67 1347.30 1401.80 1267.26 1277.16 1249.45
2 675.44 654.61 670.44 675.64 749.42 708.82 671.18 575.06
4 363.46 373.45 298.77 335.45 375.15 351.19 339.93 284.88
6 238.57 273.60 254.96 234.18 248.92 275.98 230.39 197.33
8 198.90 217.38 225.44 172.39 185.28 206.19 197.03 143.36
12 172.40 255.62 212.30 143.94 - 145.89 118.73 108.22

R. In theory, productivity should grow during size scale-up;

however, spatial limitations increase the number of times the

robots meet and beyond a given R, it is argued that they

will spend more time avoiding each other than effectively

patrolling on their own.

Another interesting aspect illustrated in the boxplot of Fig.

5 is that the median ĨG is lower than the mean (IG) in all

configurations. This means that the IV values are positively

skewed, i.e., most of the values are below the average, IG .

Using findings from previous works (cf. [12], [14]), where

tests in the same map and benchmarking with several state-

of-the-art patrolling approaches were conducted, Table I was

built. In this table, performance of 8 approaches, including

CBLS, with the same teamsizes is compared using the IG
metric. The results obtained in this work are depicted in the

last column, and as can be seen, these clearly outperform

the rest of the approaches. For more details on the vari-

ous strategies and tests previously conducted, the interested

reader should refer to [12] and [14].

Finally, on a general note, visual inspection of the trajec-

tories of robots using CBLS showed that prediction of pa-

trolling routes is far from being straightforward, as opposed

to most strategies presented in Table I. This stochastic be-

havior, together with the promising results obtained, proves

the effectiveness of the approach and the potential to apply

it in actual security systems with physical teams of robots.

V. CONCLUSION

In this work, cooperative multi-agent learning has been

addressed in order to solve the patrolling problem in a dis-

tributed way. Robots make use of Bayesian decision to reason

on their moves so as to patrol effectively an environment,

while coordinating their behaviors. Concurrent reward-based

learning has been adopted given that, in this domain, the

decomposition of the problem reduces the complexity of the

general cooperative mission by distributing computational

load among each independent learner.

Experimental results have shown that the method is able to

tackle the problem, since it can deal with uncertainty and the

actions are selected according not only to prior knowledge

about the problem, but also the state of the system at the time,

resulting in adaptive, effective and distributed cooperative

patrolling. Additionally, when placed in comparison with

several state-of-the-art approaches, CBLS outperforms them

independently of teamsize.

In the future, beyond testing the approach with physical

robots in real environments, it might be interesting to re-

lax the assumption of perfect communication, testing the

performance using only local interactions between robots

in the same range, similarly to our previous work [14].

Finally, adding to the decision knowledge from beyond the

local neighborhood of a robot could potentially improve the

performance even further.
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