
Abstract— This article presents the full integration of compact 
educational mobile robotic platforms built around an Arduino 
controller board in the Robotic Operating System (ROS). To that 
end, a driver interface in ROS was created to drastically decrease 
the development time, providing hardware abstraction and intui-
tive operation mode, allowing researchers to focus essentially in 
their main research motivation. Moreover, the full integration in 
ROS provided by the driver enables the use of several tools for 
data analysis, easiness of interaction between multiple robots, 
sensors and teleoperation devices, thereby targeting engineering 
education. To validate the approach, diverse experimental field 
tests were conducted using different Arduino-based robotic plat-
forms.

I. INTRODUCTION
Mobile robotics is a technological field and a research area 

which has witnessed incredible advances for the last decades. It 
finds application in areas like automatic cleaning, agriculture, 
support to medical services, hazard environments, space explo-
ration, military, intelligent transportation, social robotics, and 
entertainment [1]. In robotics research, the need for practical 
integration tools to implement valuable scientific contributions 
is felt frequently. However, roboticists end up spending exces-
sive time with engineering solutions for their particular hard-
ware setup, often reinventing the wheel. For that purpose, sev-
eral different mobile robotic platforms have emerged with the 
ability to support research work focusing on applications like 
search and rescue, security applications, human interaction or 
robotics soccer and, nowadays, almost every major engineering 
institute has one or more laboratories focusing on mobile robot-
ics research. 

Earlier, the focus of research was especially on large and 
medium systems. However, with recent advances in sensor 
miniaturization and the increasing computational power and 
capability of microcontrollers in the past years, the emphasis 
has been put on the development of smaller and lower cost 
robots. Such low-cost platforms make affordable the experi-
mentation with a larger number of robots (e.g., in cooperative 
robotics and swarm robotics) and are also ideal for educational 
purposes. With such assumptions in mind, we have been doing 
engineering and research work with two Arduino-based mobile 
platforms [2]: the TraxBot [3] and the StingBot1. The choice 
fell upon Arduino solutions, since it presents an easy-to-learn
programming language (derived from C++) that incorporates 
various complex programming functions into simple commands 
that are much easier for students to learn. Moreover, the sim-
plicity of the Arduino to create, modify and improve projects, 
as well as its open-source and reduced cost makes it among the 
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most used microcontroller solutions in the educational context 
[2].

Following the trend of research, in this work the focus is on 
educational, open-source platforms that enable researchers, 
students and robot enthusiasts to quickly perform real world 
experimentation, having access to the tools provided by the 
Robotic Operating System (ROS) [4]. ROS is currently the 
most trending and popular robotic framework in the world, 
reaching critical mass and being the closest one to become the 
standard that the robotics community urgently needed. 

With the exponential growth of robotics, some difficulties 
have been found in terms of writing software for robots. Differ-
ent types of robots can have wildly varying hardware, making 
code reuse nontrivial. Opposing this tendency, ROS provides 
libraries and tools to help software developers to create robot 
applications. The major goals of ROS are hardware abstraction, 
low-level device control, implementation of commonly-used 
functionally, message-passing between processes and package 
management. One of its gold marks is the amount of tools 
available for the community like the Stage simulator [5], navi-
gation capabilities 2, visual SLAM [6] and 3D point cloud based 
object recognition [7], among others. Regular updates enable 
the users to obtain, build, write and run ROS code across multi-
ple computers.   

In the next section, we review general purpose and educa-
tional mobile robots, focusing on those already integrated in 
ROS and briefly describe our Arduino-based robot platforms. 
In section III, the main contributions of this work are revealed 
and details on the development of the ROS driver and its fea-
tures are presented. In the subsequent section, preliminary 
results with physical Arduino-based robots and a team of 
mixed real and virtual cooperating agents are presented. Final-
ly, the article ends with conclusions and future work. 

II. RELATED WORK

The following requirements, sorted by relevance, can be ex-
pected from robots to be used for educational purposes [8][9]: 

Cost — Robots should be as cheap as possible to overcome 
budget limitations and evaluate multi-robot applications 
(e.g., swarm robotics); 
Energy Autonomy — Robots should have a long battery life 
since they may have to operate long enough during devel-
opment and experimentation; 
Communication — Robots need to support wireless com-
munication to increase the range of applications (e.g., coop-
erative systems); 
Sensory System — Robots should be equipped with some 
form of sensing capability to allow interaction between 
them and with their environment; 
Processing — Robots need to be able to process information 
about other robots and the environment (e.g., sensing data). 

  

2 http://www.ros.org/wiki/navigation
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Fig. 1. Well-known educational and research mobile robotic platforms:  
from left to right, iRobot Create, Turtlebot, Mindstorm NXT, e-puck, MarXbot, SRV-1 Blackfin and Pioneer 3-DX, respectively. 

The following subsection reviews popular educational and 
research platforms available in the market, after which we pre-
sent the Arduino-based educational platforms developed and 
evaluate them according to the requirements presented above. 

A. Educational Robotic Platforms 
Several off-the-shelf mobile robots with various sensors and 

diverse capabilities are illustrated in Fig. 1. We address their 
mobility within different ground environments, capabilities, 
size, sensing/perception, processing power, autonomous navi-
gation and integration in ROS. 

The Roomba Create [10] from iRobot was designed for stu-
dents and researchers, being very popular in the robotics com-
munity due to its small size and low cost. It is a circular plat-
form, with extra space for larger sensors (e.g., 2D laser sensor 
or Kinect). Many choose to utilize an external computer that 
supports serial communication to control the Create robot, due 
to troublesome limitations in storage space and processing 
power. A ROS driver for the Roomba iCreate has already been 
developed (irobot_create_2_1 package in the brown_drivers 
stack), as well as the original vacuum cleaning Roomba (room-
ba_robot stack).

In fact, a popular off-the-shelf robot, developed at Willow 
Garage, has been built upon an iRobot Create: the TurtleBot3. 
This is a modular development platform incorporating an Xbox 
Kinect and an ASUS eeePC 1215N netbook. TurtleBot pro-
vides 3D functionalities and ROS out of the box (through the 
turtlebot stack), being fully open source and exploring all com-
bined capabilities of its components. 

The Mindstorms NXT [11] from Lego is an educational, ac-
ademic robot kit, ideal for beginners. The robot is equipped 
with drive motors with encoders and a good variety of cheap 
sensors like an accelerometer, light, sound, ultrasound and 
touch sensors. Support for interfacing and controlling this robot 
with ROS is also available, through the nxt stack. 

The e-puck [12] is an educational swarm platform for be-
ginners. It has tiny dimensions with only 80mm of diameter, 
equipped with a vast set of sensors like microphones, infrared 
sensors, 3D accelerometer and a VGA camera. Similarly, the 
MarXbot [13] platform has 170 mm of diameter, being fully 
equipped with infrared range sensors, 3D accelerometer, gyro-
scope, and an omnidirectional camera. It has a good processing 
power with an ARM 11 processor at 533MHz. Both the e-puck 
and the MarXbot are programmed in a user-friendly scripting 
language, which uses ASEBA, an event-based low level control 
architecture. In order to interface it with ROS, a ROS/ASEBA 
Bridge has been released (ethzasl_aseba stack4).

Additionally, the SRV-1 Blackfin [14] from Surveyor is a 
small-sized robot equipped with tracks with differential config-
uration. This robot has a good processing power with a 
1000MIPS at 500MHz CPU, capable of running Linux Kernel 
2.6. It is equipped with two IR rangers or optional ultrasonic 
ranging and a 1.3MP camera. It also supports Wireless 
802.11b/g communication and various I2C sensors. Unlike the 

3 http://www.willowgarage.com/turtlebot
4 http://www.ros.org/wiki/ethzasl_aseba

previous platforms, SRV-1 Blackfin can be driven in rough 
terrains due to its tracking system. At the time of writing, only 
partial support for ROS is available through the ros-surveyor 5

stack, which offers a driver for the Surveyor Vision System in 
ROS. 

Among the larger, more equipped and more powerful mo-
bile robots, a reference platform for research and education is 
the Pioneer 3 DX from ActivMedia [15]. This is a robust differ-
ential drive platform with 8 sonars in a ring disposition, a high-
performance onboard microcontroller based on a 32-bit Renesas 
SH2-7144 RISC microprocessor, offering great reliability and 
easiness of use. Compared to the previously referred robots, this 
robot has greater weight and less affordability. Two different 
drivers are available to interface the Pioneer 3 DX with ROS: 
ROSARIA6 and p2os7. 

B. Arduino-Based Robotic Platforms 
Even though most of referred platforms provide open source 

software, they usually require a slow learning curve and the 
hardware has limited expandability. Arduino solutions have 
recently appeared in the market to work around such issues. For 
this reason, our platforms were built around an Arduino control 
board, which accesses the motor encoders and other infor-
mation from the power motor driver like temperature and bat-
tery state, being also able to send commands to the motors, read 
sonar information and exchange messages natively through 
Zigbee. Although this section briefly describes the platforms 
assembled in our research laboratory, the proposed driver could 
be applied to any other Arduino-based platform such as the 
eSwarBot [8], the Bot’n Roll OMNI 8 and many others (e.g.,
[1]). 

The Arduino-based platforms under consideration, namely 
the TraxBot v1 and v2 and the Stingbot [3], are depicted in Fig.
2. All these platforms’ processing units consist of Arduino Uno 
boards, which include a microcontroller ATmega 328p that 
controls the platforms motion through the use of the Bot’n Roll 
OMNI-3MD motor driver8. 

Fig. 2. Arduino-based robotic platforms,
a) TraxBot v1; b) TraxBot v2;  c) StingBot. 

As for power source, two packs of 12V 2300mAh Ni-MH 
batteries ensure good energy autonomy to the robots. For dis-
tance sensing, 3 Maxbotix Sonars MB1300 with a range of 
approximately 6 meters were used. However, and as experi-

5 https://github.com/rene0/ros-surveyor
6 http://www.ros.org/wiki/ROSARIA
7 http://www.ros.org/wiki/p2os
8 http://botnroll.com/omni3md

a) b) c)

Proceedings of the 13th International Conference on Mobile Robots and Competitions 
April 24, 2013. Lisbon, Portugal

© 2013 IEEE 

Robotica 2013 was organized under the IEEE Robotics & Automation Society Technical Co-Sponsorship 
978-989-97531-2-9

9



mental results depict, the sensing capabilities of the platforms 
can be easily upgraded with other sensors, e.g., laser range 
finders.  Moreover, the platforms have the ability to also in-
clude a 10” netbook on top of an acrylic support, which extends 
the processing power and provides more flexibility. In our case, 
ASUS eeePC 1025C were used due to their reduced price and 
size. The notebook provides communication via Wireless Wi-Fi
802.11 b/g/n to the robot and is dedicated to run ROS onboard, 
providing the tools and means for enhanced control of the ro-
bot. Additionally, the platforms are also equipped with an Xbee 
Shield from Maxstream, consisting on a ZigBee communication 
module with an antenna attached on top of the Arduino Uno 
board as an expansion module. This Xbee Series 2 module is 
powered at 2mW having a range between 40m to 120m, for 
indoor and outdoor operation, respectively. 

C. Summary
Both Arduino-based platforms meet all the requirements pre-

viously pointed out, being ideal for multi-robot applications. In 
terms of cost, our platforms have a similar price to the Mind-
storms NXT, being more affordable than the Turtlebot, e-puck, 
MarXbot or the Pioneer. In terms of energy autonomy, both the 
TraxBot and the Stingbot can operate continuously around 3 
hours, which is a common operation time for compact plat-
forms. As for communication, unlike the iRobot Create and the 
Pioneer, which do not offer multi-point communication out of 
the box, our platforms support Zigbee communication, which is
extended with WiFi when using a netbook. Having distance 
sensors and wheel encoders with high resolution, these plat-
forms have the flexibility to incorporate even more custom 
sensors, as opposed to the SRV-1 Blackfin or the Mindstorms 
NXT. Furthermore, its hybrid design enables not only to make 
use of the 24 MIPS at 26MhZ Atmega 328 microcontroller, but 
also the Intel Atom N2800 Dual Core at 1.86 GhZ processor of 
the netbook, similarly to the Turtlebot and outperforming the 
smaller platforms.

 Additionally, when developing our educational robots other 
requirements were taken into account: all hardware is either 
made of aluminium or stainless steel, being extremely robust; 
their dimensions are adequate for both indoor and outdoor ex-
periments; and they have the ability to run ROS. 

III. ROS DRIVER FOR ARDUINO-BASED ROBOTS

The key contributions of this work are the development and 
description of a driver that enables fast prototyping through the 
interface and control of custom educational platforms with 
ROS, which can be generalized to different Arduino-based 
platforms. 

ROS provides tools to interface with the Arduino family of 
boards through the rosserial stack 9.However, it was verified 
that rosserial is not suitable for this work, due to the high over-
head imposed by its data acquisition and commands, which 
result in an excessive workload to the Arduino microcontroller 
Atmel 328p SRAM. In fact, the microcontroller presents lim-
ited SRAM memory and for standard ROS topics (float32 mes-
sages + message headers), stress tests have shown that only a 
maximum of 15 ROS topics can be used in parallel and the 
message bu er is limited to 70 standard messages. 

The most important feature in rosserial is to add libraries to
the Arduino source code, in order to emulate ROS language 
directly in Arduino code. This results in high overhead in com-
munication between PC / ROS and the Arduino, due to the 

9 http://www.ros.org/wiki/rosserial

structures used, for example, when publishing messages from 
the Arduino side. For this reason, a custom driver was created, 
being able to adopt a faster and more transparent communica-
tion between any Arduino board and ROS. We propose a solu-
tion based on the serial_communication stack 10, where the 
messages sent from the Arduino only consist of arrays of char-
acters, which are parsed to integer variables on the PC / ROS 
side, hugely decreasing the communication load. 

A. Driver Description 
The mrl_robots11 driver herein presented was developed for 

integration and control of the platform using ROS Fuerte ver-
sion running on Ubuntu 11.10 “Oneiric Ocelot”. The seri-
al_communication stack 10, was used to establish point-to-point 
serial communication between the Arduino and the PC / ROS 
side, without the overhead of rosserial. This enables robust and 
fast communication in more complex applications, such as 
teleoperation, crossing of sensory information, the integration 
of the navigation stack, among others. It also has the versatility 
of creating protocols to exchange data between the Arduino 
and the PC/ROS side, which enables the creation of a custom-
ized and transparent serial communication.  

The Arduino firmware code was developed taking into ac-
count all components and their features, which are required for 
the robots’ operation. In Fig. 3 the architecture of the ROS 
Driver is illustrated. The power motor driver OMNI-3MD 
provides libraries to control the motors (i.e., velocity or posi-
tion control), read encoders and temperature, as well as setting 
the parameters for the initial configurations of the PID control-
ler, among others. The motor driver is connected to the Ar-
duino Uno through I2C communications. C/C++ language was 
used as the programming language for the ATmega328p mi-
crocontroller. Algorithm 1 illustrates the resident Ro-
bot/Arduino Firmware code. 

ROS Driver 

Connection node

 TraxBot Source Code
Cereal_port node establish I2C 

communication via serial 
protocol and Driver source 

code interprets the frame sent 
by the firmware program to 

perform the desired task.

Driver Source Code

USB cable 
connection

Firmware 
Implemented in C with specific 

protocol frame 

Motor Driver 
Power driver to control motors, 

Encoders and temperature among others.

I2C

Fig. 3. ROS driver architecture diagram.

The protocol developed to interface ROS with the Arduino 
board consists on sending a frame with the configuration 
shown in Fig. 4. The character ‘@’ is used at the beginning of 
every frame, and commas ‘,’ separate the different parameters. 
Character ‘e’ identifies the end of the frame. Regarding the 
content of the protocol, the first parameter corresponds to the 
action command; like move motors, and others (Algorithm 1).
Following the action command, commas separate the argu-
ments of the designated commands which have been defined as 
signed integers. 

10 http://www.ros.org/wiki/cereal_port
11 http://www.ros.org/wiki/mrl_robots
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Fig. 4. Frame protocol to receive/send data from/to the Arduino Uno

Let us suppose, for instance, that we want the platform to 
move with a linear velocity of 0.5 m/s and an angular velocity 
of -0.8 rad/s, the frame would be, “@11,500,-800e” represent-
ing “@command,(lin_vel×103),(ang_vel×103)e”.

In the ROS side, a computation process (robot_node) has 
been programmed, which starts the serial connection using the 
cereal_port library of serial_communication stack and receives 
streams of information from the robot. Whenever a data frame 
has been received, a callback is triggered, publishing the corre-
sponding message into appropriate ROS topics, thus providing 
updated information to the rest of ROS ecosystem. Algorithm 
2 shows how the driver works. In Fig. 5, it is shown how a 
ROS user application node (e.g., a mapping algorithm) can 
interact with robot_node by sending velocity commands to the 
base and receiving information like sonar range, odometry, 
transforms, etc. One of many ROS tools, rxgraph, has been 
used to allow real time monitoring of the available nodes, as 
well as topics exchanged by each node. Note also the interac-
tion with other existing nodes in ROS like the wiimote_node12,
used for teleoperating the robot through a Nintendo’s Wii 
remote controller (WiiMote), and the hokuyo_node13 to add an 
Hokuyo laser range sensor to the robot. ROS provides many 
different built-in sensor message types which are appropriately 
assigned to the topics of each component of the driver. 

The ability to stream data from the Arduino board is an in-
teresting feature of the driver because it does not require a 
synchronous communication involving requests and responses 
between ROS and the Arduino board. Hence, it frees the serial 
communication channel since it only needs a starting request 
and can be stopped at any time. Furthermore the mrl_robots
driver has the ability to enable and disable debugging options 
to track eventual errors. 

B. Driver Features and Potential 
The driver presented in the last subsection offers several fea-

tures, many of which are inherited by the direct integration 
with the ROS middleware. The driver enables the interface 
with ROS tools for data process and analysis of the platforms, 
like 3D visualization (rviz), logging real-time robot experi-
ments and playing them offline with (rosbag/rxbag), plotting 
data (rxplot) and visualizing the entire ROS network structure 
(rxgraph). 

Beyond the easiness of using the available tools, ROS also 
provides effortlessly integration of new sensors without need-
ing hardware expertise, as it will be seen in section IV. This 
opens a new range of possibilities since several well-known 
stacks from the ROS community comprise algorithms for ro-
botics development such as the navigation2 and 
slam_gmapping14 stacks. 

12 http://www.ros.org/wiki/wiimote_node
13 http://www.ros.org/wiki/hokuyo_node 
14 http://www.ros.org/wiki/slam_gmapping

Fig. 5. Rxgraph topics and nodes provided by the mrl_robots driver. 

Algorithm 1. Robot/Arduino Resident Firmware
1:
2:
3:
4:
5:

#Omni3MD library  // main motor driver command functions 
#EEPROM library     // storage robot particular specifications: robot ID,…  
#Robot library    // range sonars acquisition, calibration, PID gains
#RobotSerialComm library    // protocol serial communication
#Standard libraries  

6:
7:

Setup Functions(); // PID motor gains, using ports, encoders scale, set I2C 
connection,…

8: Streaming Functions(): 
9: sendEncodersReads()

10:
11:

Read encoder 1 and 2 pulses;
Serial reply encoder data;

12: sendEncodersSonarsReads()
13:
15:
16:

Read encoder 1 and 2 pulses;
Read sonars 1, 2 and 3 ranges;
Serial reply encoder and sonar data;

17: sendRobotInfo()
18:
19:
20:
21:
22:
23:

Read from EEPROM robot ID;
Read internal board temperature;
Read Omni-3MD driver firmware version;
Read TraxBot battery voltage;
Read firmware version;
Serial reply info data;

24: Main loop(): 
25: Switch (action):
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

sendEncodersReads;
sendEncodersSonarsReads;
sendRobotInfo;
Omni-3MD auto-calibration motors for controller purposes;
Set PID gains;
Receive Xbee message;
Send Xbee message;
Xbee node discovery;
Set prescaler from encoders;
Set desire encoders values;
Robot info;
Single encoders reading;
Single sonars reading;
Linear motors move with PID controller;
Linear motors move;
Stop motors;
Reset encoders;
Debug action;                 // (Des)Activate debug option  
Start streaming data;    // Activate desire streaming data
Stop streaming data;

Algorithm 2. PC/ROS Driver.
1:
2:

#ROS_msgs library      // ROS type messages
#Cereal_port library //  protocol serial communication  

3: Robot data callback(): 
4: UpdateOdometry()
5:
6:
7:
8:

Read encoder pulses;
Pulses convert to cartesian pose ( );
Publish in ROS topic updated pose;
Publish tf: odom → base_link

9: DriveRobot()
10:
11:

Subscribe ROS topic differential velocity commands;
Send to robot angular and linear speeds;

12: RangeUltrasonicSonars()
13: Publish ROS topic range ultrasonic sonars;
14: XbeeMsgs()
15:
16:

Publish ROS topic with Xbee message received;
Subscribe ROS topic with Xbee message to send from user node

17: UpdateRobotInfo()

18: Publish ROS topic robot information;
19: Main loop(): 
20: Establish a serial connection;
21: Receive data streaming from robot (activate callbacks);
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As a result, the overall time spent in robotics research is 
greatly reduced due to code reuse and therefore the driver 
represents a valuable tool that enables fast prototyping and 
opens a gateway into the world of ROS.  

Another interesting feature of the driver is the simplicity for 
enabling heterogeneous multi-robot coordination and coopera-
tion. Running the same hardware abstraction layer in the team  
of robots, ROS takes care of the communication messaging 
system using a publish/subscribe method, which enables all 
kinds of interaction between members of the same team, as 
seen in Fig. 6, where an example of a ROS network is depic-
ted. 

 ROS Gazebo

ROS Gazebo Node

Driver Node Stingbot 
...Robot N

Driver Node Traxbot v2 
Robot 2

Driver Node Traxbot v1
Robot 1

Computer

Multi Virtual robots in Stage 
Nodes 

Main  
Algorithm

Node

Add specific 
task

Node
Hokoyo Laser Node

Kinect  Node

Wii Remote Controller 
Node...

Navigation 
Stack

Fig. 6. Network topology example with multiple robots, sensors, 
tele-operation devices and applications.

ROS also has the potential to integrate mixed real and virtu-
al robot teams. With the use of the driver herein presented, 
together with the Stage15 multi-robot simulator, the same code 
can be used to drive either real robots or virtual agents running 
on Stage. Therefore, the developed ROS driver allows the 
integration of virtual robots with different sizes and driving 
characteristics, as seen later on. In addition, the communica-
tion between real and virtual agents is completely transparent 
since they are both operating in the same ROS network. This 
major feature is ideal to perform multi-robot tasks, allowing 
the use of a large population of robots, when no extra physical 
robots are available, being cheaper and promoting safer test 
scenarios by making interactions between physical and virtual 
world objects. 

Fig. 7. Evaluation of the ROS driver in Traxbot v1 with different sensors. a)
Ultrassound Range Sensors integration; b) Hokuyo URG-04LX Laser Range 
Finder integration.

IV. RESULTS AND DISCUSSION

In order to experimentally evaluate the ROS driver, some 
tests were conducted using physical Arduino-based robots and 

15 http://www.ros.org/wiki/stage

stage15, which provides essential options like the information 
about the ground truth pose and odometry of virtual robots.  

We present experimental tests that validate the aforemen-
tioned claims and we also show cooperative behaviors with 
real multi-robot systems, as well as mixed real and virtual 
robotic teams 16. Therefore, the experiments will allow to eval-
uate the driver flexibility to different sensors, the driver porta-
bility to different robotic platforms and the driver expandabil-
ity and integration with the existent ROS tools. 

The first experiment aims to demonstrate the driver 
flexibility to integration of different sensors. The TraxBot v1
platform was equipped with a laser range finder (LFR) and its 
performance was compared against the native ultrasonic range 
sonars on a simple mapping task. The Hokuyo URG-04LX is a 
LRF classified as an Amplitude Modulated Continuous Wave 
(AMCW) sensor. In order to test the sonars performance, an L-
shaped scenario of 2 m by 1.6 m was set up, with a 1 m width 
(Fig. 7). To perform this test, two lateral sonars placed at ±45 
degrees were used.  

In this test, the robot movement relies solely on odometry. 
In Fig. 7a it can be seen in the first rectilinear motion, that the 
sonars readings are stable (red dots) and coincident with the 
ground truth scenario limits (blue line). Green dots represent 
the midpoint of sonars acoustic beam while turning. Some 
issues arise during the 90 degrees rotation, since the sonar 
beam cone has an opening of approximately 36 degrees, thus 
presenting a much poorer resolution than the LRF, as 
illustrated in Fig. 7a. In the case of Fig. 7b, the Hokuyo LRF 
was used to perform the same test. The overture of the laser 
was set to 180 degrees with a rate of 512 samples per reading. 
It is possible to observe some discrepancy in some readings 
especially at the end of the movement due the odometry 
position error accumulated during motion.

In the second experiment, the main goal is to demonstrate 
the portability of the driver to different robots and sensors, 
which enables testing in our Arduino-based robots the existent 
algorithms in ROS. Hence, a mapping task with the 
incorporation and interaction of drivers for different sensors 
like LRF and a joystick controller was performed. Along these 
lines, this time the Traxbot v2 platform was equipped with an 
Hokuyo LRF and teleoperated with a WiiMote for a mapping 
task using Hector Mapping [16], which is available in the 
hector_slam stack17.

Fig. 8. Map generated by the Traxbot v2 with hector mapping. 

16 A video of the experiments is available at:
http://www.isr.uc.pt/~aaraujo/videos/Robotica2013

17 http://www.ros.org/wiki/hector_slam
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The teleoperation node runs on the eeePC netbook 
connected over the ROS network. The node subscribes to a 
topic which has the information of the Wiimote state and 
assigns functions for each pressed button, publishing then 
velocity commands, which are interpreted by the ROS driver, 
resulting then on motor commands. Additionally, the 
hector_mapping node subscribes to the scans provided by the 
hokuyo_node and publishes the estimate of the robot's pose 
within the map, while generating the map. Fig. 8 presents the 
resulting map in rviz, which was obtained with 
hector_mapping on our experimental lab arena. 

In the third and final experiment, we show not only the 
possibility to have coordinated behaviors with two physical 
robots, but also the possibility to include a third simulated 
robot running in stage which communicates with the other two 
forming a mixed team of real and virtual robots, as described 
in section III.B. In addition, we also integrate navigation 
capabilities in our robots, by running the navigation stack2

with a known map, in this case, the map of our experimental 
lab arena (Fig.9). 

The robots were commanded to navigate cyclically between 
a set of waypoints in the arena, as seen in the video of the 
experiment16. To further demonstrate their coordinating abili-
ties, a common waypoint for all three robots was defined, and 
robots had to exchange messages through a shared ROS topic 
to avoid going to the common point at the same time. They 
would wait to go to the point at the center of the arena and 
priority was given to the robot who expressed firstly its inten-
tion to move to that point. All three robots were able to coordi-
nate themselves in the environment without colliding to each 
other, due to the integration of the navigation stack2. Fig.10
presents a snapshot of rviz, illustrating the three robots moving 
in the arena. 

Fig. 9. Experimental arena with a Traxbot v2 and a Stingbot cooperating 
with a virtual robot, running on stage. 

Fig. 10. The three robots coordinating their behaviors by exchanging ROS 
messages (rviz).

V. CONCLUSIONS AND FUTURE WORK

In this paper a solution for integrating Arduino-based robot-
ic platforms in ROS, through the development of a ROS driver,
was presented. It was shown the great advantages of integrat-
ing the platform with ROS middleware, enabling the usage of a 
wide range of tools and reducing the development time 
through code reuse. The robots, alongside with Arduino and 
ROS open-source development tools, present themselves as 
ideal platforms for educational robotics. Beyond providing 
access to all ROS tools, the driver also simplifies the robotic 
development by: i) supporting hardware abstraction to easily 
control the platform; ii) allowing for the extension and integra-
tion of all kinds of sensors; and iii) enabling multi-robot coop-
eration and coordination through the operation in a ROS net-
work, both for real teams of homogeneous and heterogeneous 
robots, as well as hybrid teams of real and virtual agents, run-
ning the same code. Results from the experiments that were
conducted demonstrate all these features and the insignificant 
overhead imposed by the driver was discussed.
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